peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/linalg
/_misc.py
import numpy as np | |
from numpy.linalg import LinAlgError | |
from .blas import get_blas_funcs | |
from .lapack import get_lapack_funcs | |
__all__ = ['LinAlgError', 'LinAlgWarning', 'norm'] | |
class LinAlgWarning(RuntimeWarning): | |
""" | |
The warning emitted when a linear algebra related operation is close | |
to fail conditions of the algorithm or loss of accuracy is expected. | |
""" | |
pass | |
def norm(a, ord=None, axis=None, keepdims=False, check_finite=True): | |
""" | |
Matrix or vector norm. | |
This function is able to return one of eight different matrix norms, | |
or one of an infinite number of vector norms (described below), depending | |
on the value of the ``ord`` parameter. For tensors with rank different from | |
1 or 2, only `ord=None` is supported. | |
Parameters | |
---------- | |
a : array_like | |
Input array. If `axis` is None, `a` must be 1-D or 2-D, unless `ord` | |
is None. If both `axis` and `ord` are None, the 2-norm of | |
``a.ravel`` will be returned. | |
ord : {int, inf, -inf, 'fro', 'nuc', None}, optional | |
Order of the norm (see table under ``Notes``). inf means NumPy's | |
`inf` object. | |
axis : {int, 2-tuple of ints, None}, optional | |
If `axis` is an integer, it specifies the axis of `a` along which to | |
compute the vector norms. If `axis` is a 2-tuple, it specifies the | |
axes that hold 2-D matrices, and the matrix norms of these matrices | |
are computed. If `axis` is None then either a vector norm (when `a` | |
is 1-D) or a matrix norm (when `a` is 2-D) is returned. | |
keepdims : bool, optional | |
If this is set to True, the axes which are normed over are left in the | |
result as dimensions with size one. With this option the result will | |
broadcast correctly against the original `a`. | |
check_finite : bool, optional | |
Whether to check that the input matrix contains only finite numbers. | |
Disabling may give a performance gain, but may result in problems | |
(crashes, non-termination) if the inputs do contain infinities or NaNs. | |
Returns | |
------- | |
n : float or ndarray | |
Norm of the matrix or vector(s). | |
Notes | |
----- | |
For values of ``ord <= 0``, the result is, strictly speaking, not a | |
mathematical 'norm', but it may still be useful for various numerical | |
purposes. | |
The following norms can be calculated: | |
===== ============================ ========================== | |
ord norm for matrices norm for vectors | |
===== ============================ ========================== | |
None Frobenius norm 2-norm | |
'fro' Frobenius norm -- | |
'nuc' nuclear norm -- | |
inf max(sum(abs(a), axis=1)) max(abs(a)) | |
-inf min(sum(abs(a), axis=1)) min(abs(a)) | |
0 -- sum(a != 0) | |
1 max(sum(abs(a), axis=0)) as below | |
-1 min(sum(abs(a), axis=0)) as below | |
2 2-norm (largest sing. value) as below | |
-2 smallest singular value as below | |
other -- sum(abs(a)**ord)**(1./ord) | |
===== ============================ ========================== | |
The Frobenius norm is given by [1]_: | |
:math:`||A||_F = [\\sum_{i,j} abs(a_{i,j})^2]^{1/2}` | |
The nuclear norm is the sum of the singular values. | |
Both the Frobenius and nuclear norm orders are only defined for | |
matrices. | |
References | |
---------- | |
.. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*, | |
Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15 | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import norm | |
>>> a = np.arange(9) - 4.0 | |
>>> a | |
array([-4., -3., -2., -1., 0., 1., 2., 3., 4.]) | |
>>> b = a.reshape((3, 3)) | |
>>> b | |
array([[-4., -3., -2.], | |
[-1., 0., 1.], | |
[ 2., 3., 4.]]) | |
>>> norm(a) | |
7.745966692414834 | |
>>> norm(b) | |
7.745966692414834 | |
>>> norm(b, 'fro') | |
7.745966692414834 | |
>>> norm(a, np.inf) | |
4 | |
>>> norm(b, np.inf) | |
9 | |
>>> norm(a, -np.inf) | |
0 | |
>>> norm(b, -np.inf) | |
2 | |
>>> norm(a, 1) | |
20 | |
>>> norm(b, 1) | |
7 | |
>>> norm(a, -1) | |
-4.6566128774142013e-010 | |
>>> norm(b, -1) | |
6 | |
>>> norm(a, 2) | |
7.745966692414834 | |
>>> norm(b, 2) | |
7.3484692283495345 | |
>>> norm(a, -2) | |
0 | |
>>> norm(b, -2) | |
1.8570331885190563e-016 | |
>>> norm(a, 3) | |
5.8480354764257312 | |
>>> norm(a, -3) | |
0 | |
""" | |
# Differs from numpy only in non-finite handling and the use of blas. | |
if check_finite: | |
a = np.asarray_chkfinite(a) | |
else: | |
a = np.asarray(a) | |
if a.size and a.dtype.char in 'fdFD' and axis is None and not keepdims: | |
if ord in (None, 2) and (a.ndim == 1): | |
# use blas for fast and stable euclidean norm | |
nrm2 = get_blas_funcs('nrm2', dtype=a.dtype, ilp64='preferred') | |
return nrm2(a) | |
if a.ndim == 2: | |
# Use lapack for a couple fast matrix norms. | |
# For some reason the *lange frobenius norm is slow. | |
lange_args = None | |
# Make sure this works if the user uses the axis keywords | |
# to apply the norm to the transpose. | |
if ord == 1: | |
if np.isfortran(a): | |
lange_args = '1', a | |
elif np.isfortran(a.T): | |
lange_args = 'i', a.T | |
elif ord == np.inf: | |
if np.isfortran(a): | |
lange_args = 'i', a | |
elif np.isfortran(a.T): | |
lange_args = '1', a.T | |
if lange_args: | |
lange = get_lapack_funcs('lange', dtype=a.dtype, ilp64='preferred') | |
return lange(*lange_args) | |
# fall back to numpy in every other case | |
return np.linalg.norm(a, ord=ord, axis=axis, keepdims=keepdims) | |
def _datacopied(arr, original): | |
""" | |
Strict check for `arr` not sharing any data with `original`, | |
under the assumption that arr = asarray(original) | |
""" | |
if arr is original: | |
return False | |
if not isinstance(original, np.ndarray) and hasattr(original, '__array__'): | |
return False | |
return arr.base is None | |