peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/linalg
/_sketches.py
""" Sketching-based Matrix Computations """ | |
# Author: Jordi Montes <[email protected]> | |
# August 28, 2017 | |
import numpy as np | |
from scipy._lib._util import check_random_state, rng_integers | |
from scipy.sparse import csc_matrix | |
__all__ = ['clarkson_woodruff_transform'] | |
def cwt_matrix(n_rows, n_columns, seed=None): | |
r""" | |
Generate a matrix S which represents a Clarkson-Woodruff transform. | |
Given the desired size of matrix, the method returns a matrix S of size | |
(n_rows, n_columns) where each column has all the entries set to 0 | |
except for one position which has been randomly set to +1 or -1 with | |
equal probability. | |
Parameters | |
---------- | |
n_rows : int | |
Number of rows of S | |
n_columns : int | |
Number of columns of S | |
seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional | |
If `seed` is None (or `np.random`), the `numpy.random.RandomState` | |
singleton is used. | |
If `seed` is an int, a new ``RandomState`` instance is used, | |
seeded with `seed`. | |
If `seed` is already a ``Generator`` or ``RandomState`` instance then | |
that instance is used. | |
Returns | |
------- | |
S : (n_rows, n_columns) csc_matrix | |
The returned matrix has ``n_columns`` nonzero entries. | |
Notes | |
----- | |
Given a matrix A, with probability at least 9/10, | |
.. math:: \|SA\| = (1 \pm \epsilon)\|A\| | |
Where the error epsilon is related to the size of S. | |
""" | |
rng = check_random_state(seed) | |
rows = rng_integers(rng, 0, n_rows, n_columns) | |
cols = np.arange(n_columns+1) | |
signs = rng.choice([1, -1], n_columns) | |
S = csc_matrix((signs, rows, cols),shape=(n_rows, n_columns)) | |
return S | |
def clarkson_woodruff_transform(input_matrix, sketch_size, seed=None): | |
r""" | |
Applies a Clarkson-Woodruff Transform/sketch to the input matrix. | |
Given an input_matrix ``A`` of size ``(n, d)``, compute a matrix ``A'`` of | |
size (sketch_size, d) so that | |
.. math:: \|Ax\| \approx \|A'x\| | |
with high probability via the Clarkson-Woodruff Transform, otherwise | |
known as the CountSketch matrix. | |
Parameters | |
---------- | |
input_matrix : array_like | |
Input matrix, of shape ``(n, d)``. | |
sketch_size : int | |
Number of rows for the sketch. | |
seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional | |
If `seed` is None (or `np.random`), the `numpy.random.RandomState` | |
singleton is used. | |
If `seed` is an int, a new ``RandomState`` instance is used, | |
seeded with `seed`. | |
If `seed` is already a ``Generator`` or ``RandomState`` instance then | |
that instance is used. | |
Returns | |
------- | |
A' : array_like | |
Sketch of the input matrix ``A``, of size ``(sketch_size, d)``. | |
Notes | |
----- | |
To make the statement | |
.. math:: \|Ax\| \approx \|A'x\| | |
precise, observe the following result which is adapted from the | |
proof of Theorem 14 of [2]_ via Markov's Inequality. If we have | |
a sketch size ``sketch_size=k`` which is at least | |
.. math:: k \geq \frac{2}{\epsilon^2\delta} | |
Then for any fixed vector ``x``, | |
.. math:: \|Ax\| = (1\pm\epsilon)\|A'x\| | |
with probability at least one minus delta. | |
This implementation takes advantage of sparsity: computing | |
a sketch takes time proportional to ``A.nnz``. Data ``A`` which | |
is in ``scipy.sparse.csc_matrix`` format gives the quickest | |
computation time for sparse input. | |
>>> import numpy as np | |
>>> from scipy import linalg | |
>>> from scipy import sparse | |
>>> rng = np.random.default_rng() | |
>>> n_rows, n_columns, density, sketch_n_rows = 15000, 100, 0.01, 200 | |
>>> A = sparse.rand(n_rows, n_columns, density=density, format='csc') | |
>>> B = sparse.rand(n_rows, n_columns, density=density, format='csr') | |
>>> C = sparse.rand(n_rows, n_columns, density=density, format='coo') | |
>>> D = rng.standard_normal((n_rows, n_columns)) | |
>>> SA = linalg.clarkson_woodruff_transform(A, sketch_n_rows) # fastest | |
>>> SB = linalg.clarkson_woodruff_transform(B, sketch_n_rows) # fast | |
>>> SC = linalg.clarkson_woodruff_transform(C, sketch_n_rows) # slower | |
>>> SD = linalg.clarkson_woodruff_transform(D, sketch_n_rows) # slowest | |
That said, this method does perform well on dense inputs, just slower | |
on a relative scale. | |
References | |
---------- | |
.. [1] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation | |
and regression in input sparsity time. In STOC, 2013. | |
.. [2] David P. Woodruff. Sketching as a tool for numerical linear algebra. | |
In Foundations and Trends in Theoretical Computer Science, 2014. | |
Examples | |
-------- | |
Create a big dense matrix ``A`` for the example: | |
>>> import numpy as np | |
>>> from scipy import linalg | |
>>> n_rows, n_columns = 15000, 100 | |
>>> rng = np.random.default_rng() | |
>>> A = rng.standard_normal((n_rows, n_columns)) | |
Apply the transform to create a new matrix with 200 rows: | |
>>> sketch_n_rows = 200 | |
>>> sketch = linalg.clarkson_woodruff_transform(A, sketch_n_rows, seed=rng) | |
>>> sketch.shape | |
(200, 100) | |
Now with high probability, the true norm is close to the sketched norm | |
in absolute value. | |
>>> linalg.norm(A) | |
1224.2812927123198 | |
>>> linalg.norm(sketch) | |
1226.518328407333 | |
Similarly, applying our sketch preserves the solution to a linear | |
regression of :math:`\min \|Ax - b\|`. | |
>>> b = rng.standard_normal(n_rows) | |
>>> x = linalg.lstsq(A, b)[0] | |
>>> Ab = np.hstack((A, b.reshape(-1, 1))) | |
>>> SAb = linalg.clarkson_woodruff_transform(Ab, sketch_n_rows, seed=rng) | |
>>> SA, Sb = SAb[:, :-1], SAb[:, -1] | |
>>> x_sketched = linalg.lstsq(SA, Sb)[0] | |
As with the matrix norm example, ``linalg.norm(A @ x - b)`` is close | |
to ``linalg.norm(A @ x_sketched - b)`` with high probability. | |
>>> linalg.norm(A @ x - b) | |
122.83242365433877 | |
>>> linalg.norm(A @ x_sketched - b) | |
166.58473879945151 | |
""" | |
S = cwt_matrix(sketch_size, input_matrix.shape[0], seed) | |
return S.dot(input_matrix) | |