peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/optimize
/_cobyla_py.py
""" | |
Interface to Constrained Optimization By Linear Approximation | |
Functions | |
--------- | |
.. autosummary:: | |
:toctree: generated/ | |
fmin_cobyla | |
""" | |
import functools | |
from threading import RLock | |
import numpy as np | |
from scipy.optimize import _cobyla as cobyla | |
from ._optimize import (OptimizeResult, _check_unknown_options, | |
_prepare_scalar_function) | |
try: | |
from itertools import izip | |
except ImportError: | |
izip = zip | |
__all__ = ['fmin_cobyla'] | |
# Workaround as _cobyla.minimize is not threadsafe | |
# due to an unknown f2py bug and can segfault, | |
# see gh-9658. | |
_module_lock = RLock() | |
def synchronized(func): | |
def wrapper(*args, **kwargs): | |
with _module_lock: | |
return func(*args, **kwargs) | |
return wrapper | |
def fmin_cobyla(func, x0, cons, args=(), consargs=None, rhobeg=1.0, | |
rhoend=1e-4, maxfun=1000, disp=None, catol=2e-4, | |
*, callback=None): | |
""" | |
Minimize a function using the Constrained Optimization By Linear | |
Approximation (COBYLA) method. This method wraps a FORTRAN | |
implementation of the algorithm. | |
Parameters | |
---------- | |
func : callable | |
Function to minimize. In the form func(x, \\*args). | |
x0 : ndarray | |
Initial guess. | |
cons : sequence | |
Constraint functions; must all be ``>=0`` (a single function | |
if only 1 constraint). Each function takes the parameters `x` | |
as its first argument, and it can return either a single number or | |
an array or list of numbers. | |
args : tuple, optional | |
Extra arguments to pass to function. | |
consargs : tuple, optional | |
Extra arguments to pass to constraint functions (default of None means | |
use same extra arguments as those passed to func). | |
Use ``()`` for no extra arguments. | |
rhobeg : float, optional | |
Reasonable initial changes to the variables. | |
rhoend : float, optional | |
Final accuracy in the optimization (not precisely guaranteed). This | |
is a lower bound on the size of the trust region. | |
disp : {0, 1, 2, 3}, optional | |
Controls the frequency of output; 0 implies no output. | |
maxfun : int, optional | |
Maximum number of function evaluations. | |
catol : float, optional | |
Absolute tolerance for constraint violations. | |
callback : callable, optional | |
Called after each iteration, as ``callback(x)``, where ``x`` is the | |
current parameter vector. | |
Returns | |
------- | |
x : ndarray | |
The argument that minimises `f`. | |
See also | |
-------- | |
minimize: Interface to minimization algorithms for multivariate | |
functions. See the 'COBYLA' `method` in particular. | |
Notes | |
----- | |
This algorithm is based on linear approximations to the objective | |
function and each constraint. We briefly describe the algorithm. | |
Suppose the function is being minimized over k variables. At the | |
jth iteration the algorithm has k+1 points v_1, ..., v_(k+1), | |
an approximate solution x_j, and a radius RHO_j. | |
(i.e., linear plus a constant) approximations to the objective | |
function and constraint functions such that their function values | |
agree with the linear approximation on the k+1 points v_1,.., v_(k+1). | |
This gives a linear program to solve (where the linear approximations | |
of the constraint functions are constrained to be non-negative). | |
However, the linear approximations are likely only good | |
approximations near the current simplex, so the linear program is | |
given the further requirement that the solution, which | |
will become x_(j+1), must be within RHO_j from x_j. RHO_j only | |
decreases, never increases. The initial RHO_j is rhobeg and the | |
final RHO_j is rhoend. In this way COBYLA's iterations behave | |
like a trust region algorithm. | |
Additionally, the linear program may be inconsistent, or the | |
approximation may give poor improvement. For details about | |
how these issues are resolved, as well as how the points v_i are | |
updated, refer to the source code or the references below. | |
References | |
---------- | |
Powell M.J.D. (1994), "A direct search optimization method that models | |
the objective and constraint functions by linear interpolation.", in | |
Advances in Optimization and Numerical Analysis, eds. S. Gomez and | |
J-P Hennart, Kluwer Academic (Dordrecht), pp. 51-67 | |
Powell M.J.D. (1998), "Direct search algorithms for optimization | |
calculations", Acta Numerica 7, 287-336 | |
Powell M.J.D. (2007), "A view of algorithms for optimization without | |
derivatives", Cambridge University Technical Report DAMTP 2007/NA03 | |
Examples | |
-------- | |
Minimize the objective function f(x,y) = x*y subject | |
to the constraints x**2 + y**2 < 1 and y > 0:: | |
>>> def objective(x): | |
... return x[0]*x[1] | |
... | |
>>> def constr1(x): | |
... return 1 - (x[0]**2 + x[1]**2) | |
... | |
>>> def constr2(x): | |
... return x[1] | |
... | |
>>> from scipy.optimize import fmin_cobyla | |
>>> fmin_cobyla(objective, [0.0, 0.1], [constr1, constr2], rhoend=1e-7) | |
array([-0.70710685, 0.70710671]) | |
The exact solution is (-sqrt(2)/2, sqrt(2)/2). | |
""" | |
err = "cons must be a sequence of callable functions or a single"\ | |
" callable function." | |
try: | |
len(cons) | |
except TypeError as e: | |
if callable(cons): | |
cons = [cons] | |
else: | |
raise TypeError(err) from e | |
else: | |
for thisfunc in cons: | |
if not callable(thisfunc): | |
raise TypeError(err) | |
if consargs is None: | |
consargs = args | |
# build constraints | |
con = tuple({'type': 'ineq', 'fun': c, 'args': consargs} for c in cons) | |
# options | |
opts = {'rhobeg': rhobeg, | |
'tol': rhoend, | |
'disp': disp, | |
'maxiter': maxfun, | |
'catol': catol, | |
'callback': callback} | |
sol = _minimize_cobyla(func, x0, args, constraints=con, | |
**opts) | |
if disp and not sol['success']: | |
print(f"COBYLA failed to find a solution: {sol.message}") | |
return sol['x'] | |
def _minimize_cobyla(fun, x0, args=(), constraints=(), | |
rhobeg=1.0, tol=1e-4, maxiter=1000, | |
disp=False, catol=2e-4, callback=None, bounds=None, | |
**unknown_options): | |
""" | |
Minimize a scalar function of one or more variables using the | |
Constrained Optimization BY Linear Approximation (COBYLA) algorithm. | |
Options | |
------- | |
rhobeg : float | |
Reasonable initial changes to the variables. | |
tol : float | |
Final accuracy in the optimization (not precisely guaranteed). | |
This is a lower bound on the size of the trust region. | |
disp : bool | |
Set to True to print convergence messages. If False, | |
`verbosity` is ignored as set to 0. | |
maxiter : int | |
Maximum number of function evaluations. | |
catol : float | |
Tolerance (absolute) for constraint violations | |
""" | |
_check_unknown_options(unknown_options) | |
maxfun = maxiter | |
rhoend = tol | |
iprint = int(bool(disp)) | |
# check constraints | |
if isinstance(constraints, dict): | |
constraints = (constraints, ) | |
if bounds: | |
i_lb = np.isfinite(bounds.lb) | |
if np.any(i_lb): | |
def lb_constraint(x, *args, **kwargs): | |
return x[i_lb] - bounds.lb[i_lb] | |
constraints.append({'type': 'ineq', 'fun': lb_constraint}) | |
i_ub = np.isfinite(bounds.ub) | |
if np.any(i_ub): | |
def ub_constraint(x): | |
return bounds.ub[i_ub] - x[i_ub] | |
constraints.append({'type': 'ineq', 'fun': ub_constraint}) | |
for ic, con in enumerate(constraints): | |
# check type | |
try: | |
ctype = con['type'].lower() | |
except KeyError as e: | |
raise KeyError('Constraint %d has no type defined.' % ic) from e | |
except TypeError as e: | |
raise TypeError('Constraints must be defined using a ' | |
'dictionary.') from e | |
except AttributeError as e: | |
raise TypeError("Constraint's type must be a string.") from e | |
else: | |
if ctype != 'ineq': | |
raise ValueError("Constraints of type '%s' not handled by " | |
"COBYLA." % con['type']) | |
# check function | |
if 'fun' not in con: | |
raise KeyError('Constraint %d has no function defined.' % ic) | |
# check extra arguments | |
if 'args' not in con: | |
con['args'] = () | |
# m is the total number of constraint values | |
# it takes into account that some constraints may be vector-valued | |
cons_lengths = [] | |
for c in constraints: | |
f = c['fun'](x0, *c['args']) | |
try: | |
cons_length = len(f) | |
except TypeError: | |
cons_length = 1 | |
cons_lengths.append(cons_length) | |
m = sum(cons_lengths) | |
# create the ScalarFunction, cobyla doesn't require derivative function | |
def _jac(x, *args): | |
return None | |
sf = _prepare_scalar_function(fun, x0, args=args, jac=_jac) | |
def calcfc(x, con): | |
f = sf.fun(x) | |
i = 0 | |
for size, c in izip(cons_lengths, constraints): | |
con[i: i + size] = c['fun'](x, *c['args']) | |
i += size | |
return f | |
def wrapped_callback(x): | |
if callback is not None: | |
callback(np.copy(x)) | |
info = np.zeros(4, np.float64) | |
xopt, info = cobyla.minimize(calcfc, m=m, x=np.copy(x0), rhobeg=rhobeg, | |
rhoend=rhoend, iprint=iprint, maxfun=maxfun, | |
dinfo=info, callback=wrapped_callback) | |
if info[3] > catol: | |
# Check constraint violation | |
info[0] = 4 | |
return OptimizeResult(x=xopt, | |
status=int(info[0]), | |
success=info[0] == 1, | |
message={1: 'Optimization terminated successfully.', | |
2: 'Maximum number of function evaluations ' | |
'has been exceeded.', | |
3: 'Rounding errors are becoming damaging ' | |
'in COBYLA subroutine.', | |
4: 'Did not converge to a solution ' | |
'satisfying the constraints. See ' | |
'`maxcv` for magnitude of violation.', | |
5: 'NaN result encountered.' | |
}.get(info[0], 'Unknown exit status.'), | |
nfev=int(info[1]), | |
fun=info[2], | |
maxcv=info[3]) | |