peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/signal
/_lti_conversion.py
""" | |
ltisys -- a collection of functions to convert linear time invariant systems | |
from one representation to another. | |
""" | |
import numpy | |
import numpy as np | |
from numpy import (r_, eye, atleast_2d, poly, dot, | |
asarray, prod, zeros, array, outer) | |
from scipy import linalg | |
from ._filter_design import tf2zpk, zpk2tf, normalize | |
__all__ = ['tf2ss', 'abcd_normalize', 'ss2tf', 'zpk2ss', 'ss2zpk', | |
'cont2discrete'] | |
def tf2ss(num, den): | |
r"""Transfer function to state-space representation. | |
Parameters | |
---------- | |
num, den : array_like | |
Sequences representing the coefficients of the numerator and | |
denominator polynomials, in order of descending degree. The | |
denominator needs to be at least as long as the numerator. | |
Returns | |
------- | |
A, B, C, D : ndarray | |
State space representation of the system, in controller canonical | |
form. | |
Examples | |
-------- | |
Convert the transfer function: | |
.. math:: H(s) = \frac{s^2 + 3s + 3}{s^2 + 2s + 1} | |
>>> num = [1, 3, 3] | |
>>> den = [1, 2, 1] | |
to the state-space representation: | |
.. math:: | |
\dot{\textbf{x}}(t) = | |
\begin{bmatrix} -2 & -1 \\ 1 & 0 \end{bmatrix} \textbf{x}(t) + | |
\begin{bmatrix} 1 \\ 0 \end{bmatrix} \textbf{u}(t) \\ | |
\textbf{y}(t) = \begin{bmatrix} 1 & 2 \end{bmatrix} \textbf{x}(t) + | |
\begin{bmatrix} 1 \end{bmatrix} \textbf{u}(t) | |
>>> from scipy.signal import tf2ss | |
>>> A, B, C, D = tf2ss(num, den) | |
>>> A | |
array([[-2., -1.], | |
[ 1., 0.]]) | |
>>> B | |
array([[ 1.], | |
[ 0.]]) | |
>>> C | |
array([[ 1., 2.]]) | |
>>> D | |
array([[ 1.]]) | |
""" | |
# Controller canonical state-space representation. | |
# if M+1 = len(num) and K+1 = len(den) then we must have M <= K | |
# states are found by asserting that X(s) = U(s) / D(s) | |
# then Y(s) = N(s) * X(s) | |
# | |
# A, B, C, and D follow quite naturally. | |
# | |
num, den = normalize(num, den) # Strips zeros, checks arrays | |
nn = len(num.shape) | |
if nn == 1: | |
num = asarray([num], num.dtype) | |
M = num.shape[1] | |
K = len(den) | |
if M > K: | |
msg = "Improper transfer function. `num` is longer than `den`." | |
raise ValueError(msg) | |
if M == 0 or K == 0: # Null system | |
return (array([], float), array([], float), array([], float), | |
array([], float)) | |
# pad numerator to have same number of columns has denominator | |
num = np.hstack((np.zeros((num.shape[0], K - M), dtype=num.dtype), num)) | |
if num.shape[-1] > 0: | |
D = atleast_2d(num[:, 0]) | |
else: | |
# We don't assign it an empty array because this system | |
# is not 'null'. It just doesn't have a non-zero D | |
# matrix. Thus, it should have a non-zero shape so that | |
# it can be operated on by functions like 'ss2tf' | |
D = array([[0]], float) | |
if K == 1: | |
D = D.reshape(num.shape) | |
return (zeros((1, 1)), zeros((1, D.shape[1])), | |
zeros((D.shape[0], 1)), D) | |
frow = -array([den[1:]]) | |
A = r_[frow, eye(K - 2, K - 1)] | |
B = eye(K - 1, 1) | |
C = num[:, 1:] - outer(num[:, 0], den[1:]) | |
D = D.reshape((C.shape[0], B.shape[1])) | |
return A, B, C, D | |
def _none_to_empty_2d(arg): | |
if arg is None: | |
return zeros((0, 0)) | |
else: | |
return arg | |
def _atleast_2d_or_none(arg): | |
if arg is not None: | |
return atleast_2d(arg) | |
def _shape_or_none(M): | |
if M is not None: | |
return M.shape | |
else: | |
return (None,) * 2 | |
def _choice_not_none(*args): | |
for arg in args: | |
if arg is not None: | |
return arg | |
def _restore(M, shape): | |
if M.shape == (0, 0): | |
return zeros(shape) | |
else: | |
if M.shape != shape: | |
raise ValueError("The input arrays have incompatible shapes.") | |
return M | |
def abcd_normalize(A=None, B=None, C=None, D=None): | |
"""Check state-space matrices and ensure they are 2-D. | |
If enough information on the system is provided, that is, enough | |
properly-shaped arrays are passed to the function, the missing ones | |
are built from this information, ensuring the correct number of | |
rows and columns. Otherwise a ValueError is raised. | |
Parameters | |
---------- | |
A, B, C, D : array_like, optional | |
State-space matrices. All of them are None (missing) by default. | |
See `ss2tf` for format. | |
Returns | |
------- | |
A, B, C, D : array | |
Properly shaped state-space matrices. | |
Raises | |
------ | |
ValueError | |
If not enough information on the system was provided. | |
""" | |
A, B, C, D = map(_atleast_2d_or_none, (A, B, C, D)) | |
MA, NA = _shape_or_none(A) | |
MB, NB = _shape_or_none(B) | |
MC, NC = _shape_or_none(C) | |
MD, ND = _shape_or_none(D) | |
p = _choice_not_none(MA, MB, NC) | |
q = _choice_not_none(NB, ND) | |
r = _choice_not_none(MC, MD) | |
if p is None or q is None or r is None: | |
raise ValueError("Not enough information on the system.") | |
A, B, C, D = map(_none_to_empty_2d, (A, B, C, D)) | |
A = _restore(A, (p, p)) | |
B = _restore(B, (p, q)) | |
C = _restore(C, (r, p)) | |
D = _restore(D, (r, q)) | |
return A, B, C, D | |
def ss2tf(A, B, C, D, input=0): | |
r"""State-space to transfer function. | |
A, B, C, D defines a linear state-space system with `p` inputs, | |
`q` outputs, and `n` state variables. | |
Parameters | |
---------- | |
A : array_like | |
State (or system) matrix of shape ``(n, n)`` | |
B : array_like | |
Input matrix of shape ``(n, p)`` | |
C : array_like | |
Output matrix of shape ``(q, n)`` | |
D : array_like | |
Feedthrough (or feedforward) matrix of shape ``(q, p)`` | |
input : int, optional | |
For multiple-input systems, the index of the input to use. | |
Returns | |
------- | |
num : 2-D ndarray | |
Numerator(s) of the resulting transfer function(s). `num` has one row | |
for each of the system's outputs. Each row is a sequence representation | |
of the numerator polynomial. | |
den : 1-D ndarray | |
Denominator of the resulting transfer function(s). `den` is a sequence | |
representation of the denominator polynomial. | |
Examples | |
-------- | |
Convert the state-space representation: | |
.. math:: | |
\dot{\textbf{x}}(t) = | |
\begin{bmatrix} -2 & -1 \\ 1 & 0 \end{bmatrix} \textbf{x}(t) + | |
\begin{bmatrix} 1 \\ 0 \end{bmatrix} \textbf{u}(t) \\ | |
\textbf{y}(t) = \begin{bmatrix} 1 & 2 \end{bmatrix} \textbf{x}(t) + | |
\begin{bmatrix} 1 \end{bmatrix} \textbf{u}(t) | |
>>> A = [[-2, -1], [1, 0]] | |
>>> B = [[1], [0]] # 2-D column vector | |
>>> C = [[1, 2]] # 2-D row vector | |
>>> D = 1 | |
to the transfer function: | |
.. math:: H(s) = \frac{s^2 + 3s + 3}{s^2 + 2s + 1} | |
>>> from scipy.signal import ss2tf | |
>>> ss2tf(A, B, C, D) | |
(array([[1., 3., 3.]]), array([ 1., 2., 1.])) | |
""" | |
# transfer function is C (sI - A)**(-1) B + D | |
# Check consistency and make them all rank-2 arrays | |
A, B, C, D = abcd_normalize(A, B, C, D) | |
nout, nin = D.shape | |
if input >= nin: | |
raise ValueError("System does not have the input specified.") | |
# make SIMO from possibly MIMO system. | |
B = B[:, input:input + 1] | |
D = D[:, input:input + 1] | |
try: | |
den = poly(A) | |
except ValueError: | |
den = 1 | |
if (prod(B.shape, axis=0) == 0) and (prod(C.shape, axis=0) == 0): | |
num = numpy.ravel(D) | |
if (prod(D.shape, axis=0) == 0) and (prod(A.shape, axis=0) == 0): | |
den = [] | |
return num, den | |
num_states = A.shape[0] | |
type_test = A[:, 0] + B[:, 0] + C[0, :] + D + 0.0 | |
num = numpy.empty((nout, num_states + 1), type_test.dtype) | |
for k in range(nout): | |
Ck = atleast_2d(C[k, :]) | |
num[k] = poly(A - dot(B, Ck)) + (D[k] - 1) * den | |
return num, den | |
def zpk2ss(z, p, k): | |
"""Zero-pole-gain representation to state-space representation | |
Parameters | |
---------- | |
z, p : sequence | |
Zeros and poles. | |
k : float | |
System gain. | |
Returns | |
------- | |
A, B, C, D : ndarray | |
State space representation of the system, in controller canonical | |
form. | |
""" | |
return tf2ss(*zpk2tf(z, p, k)) | |
def ss2zpk(A, B, C, D, input=0): | |
"""State-space representation to zero-pole-gain representation. | |
A, B, C, D defines a linear state-space system with `p` inputs, | |
`q` outputs, and `n` state variables. | |
Parameters | |
---------- | |
A : array_like | |
State (or system) matrix of shape ``(n, n)`` | |
B : array_like | |
Input matrix of shape ``(n, p)`` | |
C : array_like | |
Output matrix of shape ``(q, n)`` | |
D : array_like | |
Feedthrough (or feedforward) matrix of shape ``(q, p)`` | |
input : int, optional | |
For multiple-input systems, the index of the input to use. | |
Returns | |
------- | |
z, p : sequence | |
Zeros and poles. | |
k : float | |
System gain. | |
""" | |
return tf2zpk(*ss2tf(A, B, C, D, input=input)) | |
def cont2discrete(system, dt, method="zoh", alpha=None): | |
""" | |
Transform a continuous to a discrete state-space system. | |
Parameters | |
---------- | |
system : a tuple describing the system or an instance of `lti` | |
The following gives the number of elements in the tuple and | |
the interpretation: | |
* 1: (instance of `lti`) | |
* 2: (num, den) | |
* 3: (zeros, poles, gain) | |
* 4: (A, B, C, D) | |
dt : float | |
The discretization time step. | |
method : str, optional | |
Which method to use: | |
* gbt: generalized bilinear transformation | |
* bilinear: Tustin's approximation ("gbt" with alpha=0.5) | |
* euler: Euler (or forward differencing) method ("gbt" with alpha=0) | |
* backward_diff: Backwards differencing ("gbt" with alpha=1.0) | |
* zoh: zero-order hold (default) | |
* foh: first-order hold (*versionadded: 1.3.0*) | |
* impulse: equivalent impulse response (*versionadded: 1.3.0*) | |
alpha : float within [0, 1], optional | |
The generalized bilinear transformation weighting parameter, which | |
should only be specified with method="gbt", and is ignored otherwise | |
Returns | |
------- | |
sysd : tuple containing the discrete system | |
Based on the input type, the output will be of the form | |
* (num, den, dt) for transfer function input | |
* (zeros, poles, gain, dt) for zeros-poles-gain input | |
* (A, B, C, D, dt) for state-space system input | |
Notes | |
----- | |
By default, the routine uses a Zero-Order Hold (zoh) method to perform | |
the transformation. Alternatively, a generalized bilinear transformation | |
may be used, which includes the common Tustin's bilinear approximation, | |
an Euler's method technique, or a backwards differencing technique. | |
The Zero-Order Hold (zoh) method is based on [1]_, the generalized bilinear | |
approximation is based on [2]_ and [3]_, the First-Order Hold (foh) method | |
is based on [4]_. | |
References | |
---------- | |
.. [1] https://en.wikipedia.org/wiki/Discretization#Discretization_of_linear_state_space_models | |
.. [2] http://techteach.no/publications/discretetime_signals_systems/discrete.pdf | |
.. [3] G. Zhang, X. Chen, and T. Chen, Digital redesign via the generalized | |
bilinear transformation, Int. J. Control, vol. 82, no. 4, pp. 741-754, | |
2009. | |
(https://www.mypolyuweb.hk/~magzhang/Research/ZCC09_IJC.pdf) | |
.. [4] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital control | |
of dynamic systems, 3rd ed. Menlo Park, Calif: Addison-Wesley, | |
pp. 204-206, 1998. | |
Examples | |
-------- | |
We can transform a continuous state-space system to a discrete one: | |
>>> import numpy as np | |
>>> import matplotlib.pyplot as plt | |
>>> from scipy.signal import cont2discrete, lti, dlti, dstep | |
Define a continuous state-space system. | |
>>> A = np.array([[0, 1],[-10., -3]]) | |
>>> B = np.array([[0],[10.]]) | |
>>> C = np.array([[1., 0]]) | |
>>> D = np.array([[0.]]) | |
>>> l_system = lti(A, B, C, D) | |
>>> t, x = l_system.step(T=np.linspace(0, 5, 100)) | |
>>> fig, ax = plt.subplots() | |
>>> ax.plot(t, x, label='Continuous', linewidth=3) | |
Transform it to a discrete state-space system using several methods. | |
>>> dt = 0.1 | |
>>> for method in ['zoh', 'bilinear', 'euler', 'backward_diff', 'foh', 'impulse']: | |
... d_system = cont2discrete((A, B, C, D), dt, method=method) | |
... s, x_d = dstep(d_system) | |
... ax.step(s, np.squeeze(x_d), label=method, where='post') | |
>>> ax.axis([t[0], t[-1], x[0], 1.4]) | |
>>> ax.legend(loc='best') | |
>>> fig.tight_layout() | |
>>> plt.show() | |
""" | |
if len(system) == 1: | |
return system.to_discrete() | |
if len(system) == 2: | |
sysd = cont2discrete(tf2ss(system[0], system[1]), dt, method=method, | |
alpha=alpha) | |
return ss2tf(sysd[0], sysd[1], sysd[2], sysd[3]) + (dt,) | |
elif len(system) == 3: | |
sysd = cont2discrete(zpk2ss(system[0], system[1], system[2]), dt, | |
method=method, alpha=alpha) | |
return ss2zpk(sysd[0], sysd[1], sysd[2], sysd[3]) + (dt,) | |
elif len(system) == 4: | |
a, b, c, d = system | |
else: | |
raise ValueError("First argument must either be a tuple of 2 (tf), " | |
"3 (zpk), or 4 (ss) arrays.") | |
if method == 'gbt': | |
if alpha is None: | |
raise ValueError("Alpha parameter must be specified for the " | |
"generalized bilinear transform (gbt) method") | |
elif alpha < 0 or alpha > 1: | |
raise ValueError("Alpha parameter must be within the interval " | |
"[0,1] for the gbt method") | |
if method == 'gbt': | |
# This parameter is used repeatedly - compute once here | |
ima = np.eye(a.shape[0]) - alpha*dt*a | |
ad = linalg.solve(ima, np.eye(a.shape[0]) + (1.0-alpha)*dt*a) | |
bd = linalg.solve(ima, dt*b) | |
# Similarly solve for the output equation matrices | |
cd = linalg.solve(ima.transpose(), c.transpose()) | |
cd = cd.transpose() | |
dd = d + alpha*np.dot(c, bd) | |
elif method == 'bilinear' or method == 'tustin': | |
return cont2discrete(system, dt, method="gbt", alpha=0.5) | |
elif method == 'euler' or method == 'forward_diff': | |
return cont2discrete(system, dt, method="gbt", alpha=0.0) | |
elif method == 'backward_diff': | |
return cont2discrete(system, dt, method="gbt", alpha=1.0) | |
elif method == 'zoh': | |
# Build an exponential matrix | |
em_upper = np.hstack((a, b)) | |
# Need to stack zeros under the a and b matrices | |
em_lower = np.hstack((np.zeros((b.shape[1], a.shape[0])), | |
np.zeros((b.shape[1], b.shape[1])))) | |
em = np.vstack((em_upper, em_lower)) | |
ms = linalg.expm(dt * em) | |
# Dispose of the lower rows | |
ms = ms[:a.shape[0], :] | |
ad = ms[:, 0:a.shape[1]] | |
bd = ms[:, a.shape[1]:] | |
cd = c | |
dd = d | |
elif method == 'foh': | |
# Size parameters for convenience | |
n = a.shape[0] | |
m = b.shape[1] | |
# Build an exponential matrix similar to 'zoh' method | |
em_upper = linalg.block_diag(np.block([a, b]) * dt, np.eye(m)) | |
em_lower = zeros((m, n + 2 * m)) | |
em = np.block([[em_upper], [em_lower]]) | |
ms = linalg.expm(em) | |
# Get the three blocks from upper rows | |
ms11 = ms[:n, 0:n] | |
ms12 = ms[:n, n:n + m] | |
ms13 = ms[:n, n + m:] | |
ad = ms11 | |
bd = ms12 - ms13 + ms11 @ ms13 | |
cd = c | |
dd = d + c @ ms13 | |
elif method == 'impulse': | |
if not np.allclose(d, 0): | |
raise ValueError("Impulse method is only applicable" | |
"to strictly proper systems") | |
ad = linalg.expm(a * dt) | |
bd = ad @ b * dt | |
cd = c | |
dd = c @ b * dt | |
else: | |
raise ValueError("Unknown transformation method '%s'" % method) | |
return ad, bd, cd, dd, dt | |