peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/sparse
/_csr.py
"""Compressed Sparse Row matrix format""" | |
__docformat__ = "restructuredtext en" | |
__all__ = ['csr_array', 'csr_matrix', 'isspmatrix_csr'] | |
import numpy as np | |
from ._matrix import spmatrix | |
from ._base import _spbase, sparray | |
from ._sparsetools import (csr_tocsc, csr_tobsr, csr_count_blocks, | |
get_csr_submatrix) | |
from ._sputils import upcast | |
from ._compressed import _cs_matrix | |
class _csr_base(_cs_matrix): | |
_format = 'csr' | |
def transpose(self, axes=None, copy=False): | |
if axes is not None and axes != (1, 0): | |
raise ValueError("Sparse arrays/matrices do not support " | |
"an 'axes' parameter because swapping " | |
"dimensions is the only logical permutation.") | |
M, N = self.shape | |
return self._csc_container((self.data, self.indices, | |
self.indptr), shape=(N, M), copy=copy) | |
transpose.__doc__ = _spbase.transpose.__doc__ | |
def tolil(self, copy=False): | |
lil = self._lil_container(self.shape, dtype=self.dtype) | |
self.sum_duplicates() | |
ptr,ind,dat = self.indptr,self.indices,self.data | |
rows, data = lil.rows, lil.data | |
for n in range(self.shape[0]): | |
start = ptr[n] | |
end = ptr[n+1] | |
rows[n] = ind[start:end].tolist() | |
data[n] = dat[start:end].tolist() | |
return lil | |
tolil.__doc__ = _spbase.tolil.__doc__ | |
def tocsr(self, copy=False): | |
if copy: | |
return self.copy() | |
else: | |
return self | |
tocsr.__doc__ = _spbase.tocsr.__doc__ | |
def tocsc(self, copy=False): | |
idx_dtype = self._get_index_dtype((self.indptr, self.indices), | |
maxval=max(self.nnz, self.shape[0])) | |
indptr = np.empty(self.shape[1] + 1, dtype=idx_dtype) | |
indices = np.empty(self.nnz, dtype=idx_dtype) | |
data = np.empty(self.nnz, dtype=upcast(self.dtype)) | |
csr_tocsc(self.shape[0], self.shape[1], | |
self.indptr.astype(idx_dtype), | |
self.indices.astype(idx_dtype), | |
self.data, | |
indptr, | |
indices, | |
data) | |
A = self._csc_container((data, indices, indptr), shape=self.shape) | |
A.has_sorted_indices = True | |
return A | |
tocsc.__doc__ = _spbase.tocsc.__doc__ | |
def tobsr(self, blocksize=None, copy=True): | |
if blocksize is None: | |
from ._spfuncs import estimate_blocksize | |
return self.tobsr(blocksize=estimate_blocksize(self)) | |
elif blocksize == (1,1): | |
arg1 = (self.data.reshape(-1,1,1),self.indices,self.indptr) | |
return self._bsr_container(arg1, shape=self.shape, copy=copy) | |
else: | |
R,C = blocksize | |
M,N = self.shape | |
if R < 1 or C < 1 or M % R != 0 or N % C != 0: | |
raise ValueError('invalid blocksize %s' % blocksize) | |
blks = csr_count_blocks(M,N,R,C,self.indptr,self.indices) | |
idx_dtype = self._get_index_dtype((self.indptr, self.indices), | |
maxval=max(N//C, blks)) | |
indptr = np.empty(M//R+1, dtype=idx_dtype) | |
indices = np.empty(blks, dtype=idx_dtype) | |
data = np.zeros((blks,R,C), dtype=self.dtype) | |
csr_tobsr(M, N, R, C, | |
self.indptr.astype(idx_dtype), | |
self.indices.astype(idx_dtype), | |
self.data, | |
indptr, indices, data.ravel()) | |
return self._bsr_container( | |
(data, indices, indptr), shape=self.shape | |
) | |
tobsr.__doc__ = _spbase.tobsr.__doc__ | |
# these functions are used by the parent class (_cs_matrix) | |
# to remove redundancy between csc_matrix and csr_array | |
def _swap(x): | |
"""swap the members of x if this is a column-oriented matrix | |
""" | |
return x | |
def __iter__(self): | |
indptr = np.zeros(2, dtype=self.indptr.dtype) | |
shape = (1, self.shape[1]) | |
i0 = 0 | |
for i1 in self.indptr[1:]: | |
indptr[1] = i1 - i0 | |
indices = self.indices[i0:i1] | |
data = self.data[i0:i1] | |
yield self.__class__( | |
(data, indices, indptr), shape=shape, copy=True | |
) | |
i0 = i1 | |
def _getrow(self, i): | |
"""Returns a copy of row i of the matrix, as a (1 x n) | |
CSR matrix (row vector). | |
""" | |
M, N = self.shape | |
i = int(i) | |
if i < 0: | |
i += M | |
if i < 0 or i >= M: | |
raise IndexError('index (%d) out of range' % i) | |
indptr, indices, data = get_csr_submatrix( | |
M, N, self.indptr, self.indices, self.data, i, i + 1, 0, N) | |
return self.__class__((data, indices, indptr), shape=(1, N), | |
dtype=self.dtype, copy=False) | |
def _getcol(self, i): | |
"""Returns a copy of column i of the matrix, as a (m x 1) | |
CSR matrix (column vector). | |
""" | |
M, N = self.shape | |
i = int(i) | |
if i < 0: | |
i += N | |
if i < 0 or i >= N: | |
raise IndexError('index (%d) out of range' % i) | |
indptr, indices, data = get_csr_submatrix( | |
M, N, self.indptr, self.indices, self.data, 0, M, i, i + 1) | |
return self.__class__((data, indices, indptr), shape=(M, 1), | |
dtype=self.dtype, copy=False) | |
def _get_intXarray(self, row, col): | |
return self._getrow(row)._minor_index_fancy(col) | |
def _get_intXslice(self, row, col): | |
if col.step in (1, None): | |
return self._get_submatrix(row, col, copy=True) | |
# TODO: uncomment this once it's faster: | |
# return self._getrow(row)._minor_slice(col) | |
M, N = self.shape | |
start, stop, stride = col.indices(N) | |
ii, jj = self.indptr[row:row+2] | |
row_indices = self.indices[ii:jj] | |
row_data = self.data[ii:jj] | |
if stride > 0: | |
ind = (row_indices >= start) & (row_indices < stop) | |
else: | |
ind = (row_indices <= start) & (row_indices > stop) | |
if abs(stride) > 1: | |
ind &= (row_indices - start) % stride == 0 | |
row_indices = (row_indices[ind] - start) // stride | |
row_data = row_data[ind] | |
row_indptr = np.array([0, len(row_indices)]) | |
if stride < 0: | |
row_data = row_data[::-1] | |
row_indices = abs(row_indices[::-1]) | |
shape = (1, max(0, int(np.ceil(float(stop - start) / stride)))) | |
return self.__class__((row_data, row_indices, row_indptr), shape=shape, | |
dtype=self.dtype, copy=False) | |
def _get_sliceXint(self, row, col): | |
if row.step in (1, None): | |
return self._get_submatrix(row, col, copy=True) | |
return self._major_slice(row)._get_submatrix(minor=col) | |
def _get_sliceXarray(self, row, col): | |
return self._major_slice(row)._minor_index_fancy(col) | |
def _get_arrayXint(self, row, col): | |
return self._major_index_fancy(row)._get_submatrix(minor=col) | |
def _get_arrayXslice(self, row, col): | |
if col.step not in (1, None): | |
col = np.arange(*col.indices(self.shape[1])) | |
return self._get_arrayXarray(row, col) | |
return self._major_index_fancy(row)._get_submatrix(minor=col) | |
def isspmatrix_csr(x): | |
"""Is `x` of csr_matrix type? | |
Parameters | |
---------- | |
x | |
object to check for being a csr matrix | |
Returns | |
------- | |
bool | |
True if `x` is a csr matrix, False otherwise | |
Examples | |
-------- | |
>>> from scipy.sparse import csr_array, csr_matrix, coo_matrix, isspmatrix_csr | |
>>> isspmatrix_csr(csr_matrix([[5]])) | |
True | |
>>> isspmatrix_csr(csr_array([[5]])) | |
False | |
>>> isspmatrix_csr(coo_matrix([[5]])) | |
False | |
""" | |
return isinstance(x, csr_matrix) | |
# This namespace class separates array from matrix with isinstance | |
class csr_array(_csr_base, sparray): | |
""" | |
Compressed Sparse Row array. | |
This can be instantiated in several ways: | |
csr_array(D) | |
where D is a 2-D ndarray | |
csr_array(S) | |
with another sparse array or matrix S (equivalent to S.tocsr()) | |
csr_array((M, N), [dtype]) | |
to construct an empty array with shape (M, N) | |
dtype is optional, defaulting to dtype='d'. | |
csr_array((data, (row_ind, col_ind)), [shape=(M, N)]) | |
where ``data``, ``row_ind`` and ``col_ind`` satisfy the | |
relationship ``a[row_ind[k], col_ind[k]] = data[k]``. | |
csr_array((data, indices, indptr), [shape=(M, N)]) | |
is the standard CSR representation where the column indices for | |
row i are stored in ``indices[indptr[i]:indptr[i+1]]`` and their | |
corresponding values are stored in ``data[indptr[i]:indptr[i+1]]``. | |
If the shape parameter is not supplied, the array dimensions | |
are inferred from the index arrays. | |
Attributes | |
---------- | |
dtype : dtype | |
Data type of the array | |
shape : 2-tuple | |
Shape of the array | |
ndim : int | |
Number of dimensions (this is always 2) | |
nnz | |
size | |
data | |
CSR format data array of the array | |
indices | |
CSR format index array of the array | |
indptr | |
CSR format index pointer array of the array | |
has_sorted_indices | |
has_canonical_format | |
T | |
Notes | |
----- | |
Sparse arrays can be used in arithmetic operations: they support | |
addition, subtraction, multiplication, division, and matrix power. | |
Advantages of the CSR format | |
- efficient arithmetic operations CSR + CSR, CSR * CSR, etc. | |
- efficient row slicing | |
- fast matrix vector products | |
Disadvantages of the CSR format | |
- slow column slicing operations (consider CSC) | |
- changes to the sparsity structure are expensive (consider LIL or DOK) | |
Canonical Format | |
- Within each row, indices are sorted by column. | |
- There are no duplicate entries. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.sparse import csr_array | |
>>> csr_array((3, 4), dtype=np.int8).toarray() | |
array([[0, 0, 0, 0], | |
[0, 0, 0, 0], | |
[0, 0, 0, 0]], dtype=int8) | |
>>> row = np.array([0, 0, 1, 2, 2, 2]) | |
>>> col = np.array([0, 2, 2, 0, 1, 2]) | |
>>> data = np.array([1, 2, 3, 4, 5, 6]) | |
>>> csr_array((data, (row, col)), shape=(3, 3)).toarray() | |
array([[1, 0, 2], | |
[0, 0, 3], | |
[4, 5, 6]]) | |
>>> indptr = np.array([0, 2, 3, 6]) | |
>>> indices = np.array([0, 2, 2, 0, 1, 2]) | |
>>> data = np.array([1, 2, 3, 4, 5, 6]) | |
>>> csr_array((data, indices, indptr), shape=(3, 3)).toarray() | |
array([[1, 0, 2], | |
[0, 0, 3], | |
[4, 5, 6]]) | |
Duplicate entries are summed together: | |
>>> row = np.array([0, 1, 2, 0]) | |
>>> col = np.array([0, 1, 1, 0]) | |
>>> data = np.array([1, 2, 4, 8]) | |
>>> csr_array((data, (row, col)), shape=(3, 3)).toarray() | |
array([[9, 0, 0], | |
[0, 2, 0], | |
[0, 4, 0]]) | |
As an example of how to construct a CSR array incrementally, | |
the following snippet builds a term-document array from texts: | |
>>> docs = [["hello", "world", "hello"], ["goodbye", "cruel", "world"]] | |
>>> indptr = [0] | |
>>> indices = [] | |
>>> data = [] | |
>>> vocabulary = {} | |
>>> for d in docs: | |
... for term in d: | |
... index = vocabulary.setdefault(term, len(vocabulary)) | |
... indices.append(index) | |
... data.append(1) | |
... indptr.append(len(indices)) | |
... | |
>>> csr_array((data, indices, indptr), dtype=int).toarray() | |
array([[2, 1, 0, 0], | |
[0, 1, 1, 1]]) | |
""" | |
class csr_matrix(spmatrix, _csr_base): | |
""" | |
Compressed Sparse Row matrix. | |
This can be instantiated in several ways: | |
csr_matrix(D) | |
where D is a 2-D ndarray | |
csr_matrix(S) | |
with another sparse array or matrix S (equivalent to S.tocsr()) | |
csr_matrix((M, N), [dtype]) | |
to construct an empty matrix with shape (M, N) | |
dtype is optional, defaulting to dtype='d'. | |
csr_matrix((data, (row_ind, col_ind)), [shape=(M, N)]) | |
where ``data``, ``row_ind`` and ``col_ind`` satisfy the | |
relationship ``a[row_ind[k], col_ind[k]] = data[k]``. | |
csr_matrix((data, indices, indptr), [shape=(M, N)]) | |
is the standard CSR representation where the column indices for | |
row i are stored in ``indices[indptr[i]:indptr[i+1]]`` and their | |
corresponding values are stored in ``data[indptr[i]:indptr[i+1]]``. | |
If the shape parameter is not supplied, the matrix dimensions | |
are inferred from the index arrays. | |
Attributes | |
---------- | |
dtype : dtype | |
Data type of the matrix | |
shape : 2-tuple | |
Shape of the matrix | |
ndim : int | |
Number of dimensions (this is always 2) | |
nnz | |
size | |
data | |
CSR format data array of the matrix | |
indices | |
CSR format index array of the matrix | |
indptr | |
CSR format index pointer array of the matrix | |
has_sorted_indices | |
has_canonical_format | |
T | |
Notes | |
----- | |
Sparse matrices can be used in arithmetic operations: they support | |
addition, subtraction, multiplication, division, and matrix power. | |
Advantages of the CSR format | |
- efficient arithmetic operations CSR + CSR, CSR * CSR, etc. | |
- efficient row slicing | |
- fast matrix vector products | |
Disadvantages of the CSR format | |
- slow column slicing operations (consider CSC) | |
- changes to the sparsity structure are expensive (consider LIL or DOK) | |
Canonical Format | |
- Within each row, indices are sorted by column. | |
- There are no duplicate entries. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.sparse import csr_matrix | |
>>> csr_matrix((3, 4), dtype=np.int8).toarray() | |
array([[0, 0, 0, 0], | |
[0, 0, 0, 0], | |
[0, 0, 0, 0]], dtype=int8) | |
>>> row = np.array([0, 0, 1, 2, 2, 2]) | |
>>> col = np.array([0, 2, 2, 0, 1, 2]) | |
>>> data = np.array([1, 2, 3, 4, 5, 6]) | |
>>> csr_matrix((data, (row, col)), shape=(3, 3)).toarray() | |
array([[1, 0, 2], | |
[0, 0, 3], | |
[4, 5, 6]]) | |
>>> indptr = np.array([0, 2, 3, 6]) | |
>>> indices = np.array([0, 2, 2, 0, 1, 2]) | |
>>> data = np.array([1, 2, 3, 4, 5, 6]) | |
>>> csr_matrix((data, indices, indptr), shape=(3, 3)).toarray() | |
array([[1, 0, 2], | |
[0, 0, 3], | |
[4, 5, 6]]) | |
Duplicate entries are summed together: | |
>>> row = np.array([0, 1, 2, 0]) | |
>>> col = np.array([0, 1, 1, 0]) | |
>>> data = np.array([1, 2, 4, 8]) | |
>>> csr_matrix((data, (row, col)), shape=(3, 3)).toarray() | |
array([[9, 0, 0], | |
[0, 2, 0], | |
[0, 4, 0]]) | |
As an example of how to construct a CSR matrix incrementally, | |
the following snippet builds a term-document matrix from texts: | |
>>> docs = [["hello", "world", "hello"], ["goodbye", "cruel", "world"]] | |
>>> indptr = [0] | |
>>> indices = [] | |
>>> data = [] | |
>>> vocabulary = {} | |
>>> for d in docs: | |
... for term in d: | |
... index = vocabulary.setdefault(term, len(vocabulary)) | |
... indices.append(index) | |
... data.append(1) | |
... indptr.append(len(indices)) | |
... | |
>>> csr_matrix((data, indices, indptr), dtype=int).toarray() | |
array([[2, 1, 0, 0], | |
[0, 1, 1, 1]]) | |
""" | |