peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/sparse
/_dok.py
"""Dictionary Of Keys based matrix""" | |
__docformat__ = "restructuredtext en" | |
__all__ = ['dok_array', 'dok_matrix', 'isspmatrix_dok'] | |
import itertools | |
import numpy as np | |
from ._matrix import spmatrix | |
from ._base import _spbase, sparray, issparse | |
from ._index import IndexMixin | |
from ._sputils import (isdense, getdtype, isshape, isintlike, isscalarlike, | |
upcast, upcast_scalar, check_shape) | |
class _dok_base(_spbase, IndexMixin, dict): | |
_format = 'dok' | |
def __init__(self, arg1, shape=None, dtype=None, copy=False): | |
_spbase.__init__(self) | |
is_array = isinstance(self, sparray) | |
if isinstance(arg1, tuple) and isshape(arg1, allow_1d=is_array): | |
self._shape = check_shape(arg1, allow_1d=is_array) | |
self._dict = {} | |
self.dtype = getdtype(dtype, default=float) | |
elif issparse(arg1): # Sparse ctor | |
if arg1.format == self.format: | |
arg1 = arg1.copy() if copy else arg1 | |
else: | |
arg1 = arg1.todok() | |
if dtype is not None: | |
arg1 = arg1.astype(dtype, copy=False) | |
self._dict = arg1._dict | |
self._shape = check_shape(arg1.shape, allow_1d=is_array) | |
self.dtype = arg1.dtype | |
else: # Dense ctor | |
try: | |
arg1 = np.asarray(arg1) | |
except Exception as e: | |
raise TypeError('Invalid input format.') from e | |
if arg1.ndim > 2: | |
raise TypeError('Expected rank <=2 dense array or matrix.') | |
if arg1.ndim == 1: | |
if dtype is not None: | |
arg1 = arg1.astype(dtype) | |
self._dict = {i: v for i, v in enumerate(arg1) if v != 0} | |
self.dtype = arg1.dtype | |
else: | |
d = self._coo_container(arg1, dtype=dtype).todok() | |
self._dict = d._dict | |
self.dtype = d.dtype | |
self._shape = check_shape(arg1.shape, allow_1d=is_array) | |
def update(self, val): | |
# Prevent direct usage of update | |
raise NotImplementedError("Direct update to DOK sparse format is not allowed.") | |
def _getnnz(self, axis=None): | |
if axis is not None: | |
raise NotImplementedError( | |
"_getnnz over an axis is not implemented for DOK format." | |
) | |
return len(self._dict) | |
def count_nonzero(self): | |
return sum(x != 0 for x in self.values()) | |
_getnnz.__doc__ = _spbase._getnnz.__doc__ | |
count_nonzero.__doc__ = _spbase.count_nonzero.__doc__ | |
def __len__(self): | |
return len(self._dict) | |
def __contains__(self, key): | |
return key in self._dict | |
def setdefault(self, key, default=None, /): | |
return self._dict.setdefault(key, default) | |
def __delitem__(self, key, /): | |
del self._dict[key] | |
def clear(self): | |
return self._dict.clear() | |
def pop(self, key, default=None, /): | |
return self._dict.pop(key, default) | |
def __reversed__(self): | |
raise TypeError("reversed is not defined for dok_array type") | |
def __or__(self, other): | |
type_names = f"{type(self).__name__} and {type(other).__name__}" | |
raise TypeError(f"unsupported operand type for |: {type_names}") | |
def __ror__(self, other): | |
type_names = f"{type(self).__name__} and {type(other).__name__}" | |
raise TypeError(f"unsupported operand type for |: {type_names}") | |
def __ior__(self, other): | |
type_names = f"{type(self).__name__} and {type(other).__name__}" | |
raise TypeError(f"unsupported operand type for |: {type_names}") | |
def popitem(self): | |
return self._dict.popitem() | |
def items(self): | |
return self._dict.items() | |
def keys(self): | |
return self._dict.keys() | |
def values(self): | |
return self._dict.values() | |
def get(self, key, default=0.0): | |
"""This provides dict.get method functionality with type checking""" | |
if key in self._dict: | |
return self._dict[key] | |
if isintlike(key) and self.ndim == 1: | |
key = (key,) | |
if self.ndim != len(key): | |
raise IndexError(f'Index {key} length needs to match self.shape') | |
try: | |
for i in key: | |
assert isintlike(i) | |
except (AssertionError, TypeError, ValueError) as e: | |
raise IndexError('Index must be or consist of integers.') from e | |
key = tuple(i + M if i < 0 else i for i, M in zip(key, self.shape)) | |
if any(i < 0 or i >= M for i, M in zip(key, self.shape)): | |
raise IndexError('Index out of bounds.') | |
if self.ndim == 1: | |
key = key[0] | |
return self._dict.get(key, default) | |
# override IndexMixin.__getitem__ for 1d case until fully implemented | |
def __getitem__(self, key): | |
if self.ndim == 2: | |
return super().__getitem__(key) | |
if isinstance(key, tuple) and len(key) == 1: | |
key = key[0] | |
INT_TYPES = (int, np.integer) | |
if isinstance(key, INT_TYPES): | |
if key < 0: | |
key += self.shape[-1] | |
if key < 0 or key >= self.shape[-1]: | |
raise IndexError('index value out of bounds') | |
return self._get_int(key) | |
else: | |
raise IndexError('array/slice index for 1d dok_array not yet supported') | |
# 1D get methods | |
def _get_int(self, idx): | |
return self._dict.get(idx, self.dtype.type(0)) | |
# 2D get methods | |
def _get_intXint(self, row, col): | |
return self._dict.get((row, col), self.dtype.type(0)) | |
def _get_intXslice(self, row, col): | |
return self._get_sliceXslice(slice(row, row + 1), col) | |
def _get_sliceXint(self, row, col): | |
return self._get_sliceXslice(row, slice(col, col + 1)) | |
def _get_sliceXslice(self, row, col): | |
row_start, row_stop, row_step = row.indices(self.shape[0]) | |
col_start, col_stop, col_step = col.indices(self.shape[1]) | |
row_range = range(row_start, row_stop, row_step) | |
col_range = range(col_start, col_stop, col_step) | |
shape = (len(row_range), len(col_range)) | |
# Switch paths only when advantageous | |
# (count the iterations in the loops, adjust for complexity) | |
if len(self) >= 2 * shape[0] * shape[1]: | |
# O(nr*nc) path: loop over <row x col> | |
return self._get_columnXarray(row_range, col_range) | |
# O(nnz) path: loop over entries of self | |
newdok = self._dok_container(shape, dtype=self.dtype) | |
for key in self.keys(): | |
i, ri = divmod(int(key[0]) - row_start, row_step) | |
if ri != 0 or i < 0 or i >= shape[0]: | |
continue | |
j, rj = divmod(int(key[1]) - col_start, col_step) | |
if rj != 0 or j < 0 or j >= shape[1]: | |
continue | |
newdok._dict[i, j] = self._dict[key] | |
return newdok | |
def _get_intXarray(self, row, col): | |
col = col.squeeze() | |
return self._get_columnXarray([row], col) | |
def _get_arrayXint(self, row, col): | |
row = row.squeeze() | |
return self._get_columnXarray(row, [col]) | |
def _get_sliceXarray(self, row, col): | |
row = list(range(*row.indices(self.shape[0]))) | |
return self._get_columnXarray(row, col) | |
def _get_arrayXslice(self, row, col): | |
col = list(range(*col.indices(self.shape[1]))) | |
return self._get_columnXarray(row, col) | |
def _get_columnXarray(self, row, col): | |
# outer indexing | |
newdok = self._dok_container((len(row), len(col)), dtype=self.dtype) | |
for i, r in enumerate(row): | |
for j, c in enumerate(col): | |
v = self._dict.get((r, c), 0) | |
if v: | |
newdok._dict[i, j] = v | |
return newdok | |
def _get_arrayXarray(self, row, col): | |
# inner indexing | |
i, j = map(np.atleast_2d, np.broadcast_arrays(row, col)) | |
newdok = self._dok_container(i.shape, dtype=self.dtype) | |
for key in itertools.product(range(i.shape[0]), range(i.shape[1])): | |
v = self._dict.get((i[key], j[key]), 0) | |
if v: | |
newdok._dict[key] = v | |
return newdok | |
# override IndexMixin.__setitem__ for 1d case until fully implemented | |
def __setitem__(self, key, value): | |
if self.ndim == 2: | |
return super().__setitem__(key, value) | |
if isinstance(key, tuple) and len(key) == 1: | |
key = key[0] | |
INT_TYPES = (int, np.integer) | |
if isinstance(key, INT_TYPES): | |
if key < 0: | |
key += self.shape[-1] | |
if key < 0 or key >= self.shape[-1]: | |
raise IndexError('index value out of bounds') | |
return self._set_int(key, value) | |
else: | |
raise IndexError('array index for 1d dok_array not yet provided') | |
# 1D set methods | |
def _set_int(self, idx, x): | |
if x: | |
self._dict[idx] = x | |
elif idx in self._dict: | |
del self._dict[idx] | |
# 2D set methods | |
def _set_intXint(self, row, col, x): | |
key = (row, col) | |
if x: | |
self._dict[key] = x | |
elif key in self._dict: | |
del self._dict[key] | |
def _set_arrayXarray(self, row, col, x): | |
row = list(map(int, row.ravel())) | |
col = list(map(int, col.ravel())) | |
x = x.ravel() | |
self._dict.update(zip(zip(row, col), x)) | |
for i in np.nonzero(x == 0)[0]: | |
key = (row[i], col[i]) | |
if self._dict[key] == 0: | |
# may have been superseded by later update | |
del self._dict[key] | |
def __add__(self, other): | |
if isscalarlike(other): | |
res_dtype = upcast_scalar(self.dtype, other) | |
new = self._dok_container(self.shape, dtype=res_dtype) | |
# Add this scalar to each element. | |
for key in itertools.product(*[range(d) for d in self.shape]): | |
aij = self._dict.get(key, 0) + other | |
if aij: | |
new[key] = aij | |
elif issparse(other): | |
if other.shape != self.shape: | |
raise ValueError("Matrix dimensions are not equal.") | |
res_dtype = upcast(self.dtype, other.dtype) | |
new = self._dok_container(self.shape, dtype=res_dtype) | |
new._dict = self._dict.copy() | |
if other.format == "dok": | |
o_items = other.items() | |
else: | |
other = other.tocoo() | |
if self.ndim == 1: | |
o_items = zip(other.coords[0], other.data) | |
else: | |
o_items = zip(zip(*other.coords), other.data) | |
with np.errstate(over='ignore'): | |
new._dict.update((k, new[k] + v) for k, v in o_items) | |
elif isdense(other): | |
new = self.todense() + other | |
else: | |
return NotImplemented | |
return new | |
def __radd__(self, other): | |
return self + other # addition is comutative | |
def __neg__(self): | |
if self.dtype.kind == 'b': | |
raise NotImplementedError( | |
'Negating a sparse boolean matrix is not supported.' | |
) | |
new = self._dok_container(self.shape, dtype=self.dtype) | |
new._dict.update((k, -v) for k, v in self.items()) | |
return new | |
def _mul_scalar(self, other): | |
res_dtype = upcast_scalar(self.dtype, other) | |
# Multiply this scalar by every element. | |
new = self._dok_container(self.shape, dtype=res_dtype) | |
new._dict.update(((k, v * other) for k, v in self.items())) | |
return new | |
def _matmul_vector(self, other): | |
res_dtype = upcast(self.dtype, other.dtype) | |
# vector @ vector | |
if self.ndim == 1: | |
if issparse(other): | |
if other.format == "dok": | |
keys = self.keys() & other.keys() | |
else: | |
keys = self.keys() & other.tocoo().coords[0] | |
return res_dtype(sum(self._dict[k] * other._dict[k] for k in keys)) | |
elif isdense(other): | |
return res_dtype(sum(other[k] * v for k, v in self.items())) | |
else: | |
return NotImplemented | |
# matrix @ vector | |
result = np.zeros(self.shape[0], dtype=res_dtype) | |
for (i, j), v in self.items(): | |
result[i] += v * other[j] | |
return result | |
def _matmul_multivector(self, other): | |
result_dtype = upcast(self.dtype, other.dtype) | |
# vector @ multivector | |
if self.ndim == 1: | |
# works for other 1d or 2d | |
return sum(v * other[j] for j, v in self._dict.items()) | |
# matrix @ multivector | |
M = self.shape[0] | |
new_shape = (M,) if other.ndim == 1 else (M, other.shape[1]) | |
result = np.zeros(new_shape, dtype=result_dtype) | |
for (i, j), v in self.items(): | |
result[i] += v * other[j] | |
return result | |
def __imul__(self, other): | |
if isscalarlike(other): | |
self._dict.update((k, v * other) for k, v in self.items()) | |
return self | |
return NotImplemented | |
def __truediv__(self, other): | |
if isscalarlike(other): | |
res_dtype = upcast_scalar(self.dtype, other) | |
new = self._dok_container(self.shape, dtype=res_dtype) | |
new._dict.update(((k, v / other) for k, v in self.items())) | |
return new | |
return self.tocsr() / other | |
def __itruediv__(self, other): | |
if isscalarlike(other): | |
self._dict.update((k, v / other) for k, v in self.items()) | |
return self | |
return NotImplemented | |
def __reduce__(self): | |
# this approach is necessary because __setstate__ is called after | |
# __setitem__ upon unpickling and since __init__ is not called there | |
# is no shape attribute hence it is not possible to unpickle it. | |
return dict.__reduce__(self) | |
def diagonal(self, k=0): | |
if self.ndim == 2: | |
return super().diagonal(k) | |
raise ValueError("diagonal requires two dimensions") | |
def transpose(self, axes=None, copy=False): | |
if self.ndim == 1: | |
return self.copy() | |
if axes is not None and axes != (1, 0): | |
raise ValueError( | |
"Sparse arrays/matrices do not support " | |
"an 'axes' parameter because swapping " | |
"dimensions is the only logical permutation." | |
) | |
M, N = self.shape | |
new = self._dok_container((N, M), dtype=self.dtype, copy=copy) | |
new._dict.update((((right, left), val) for (left, right), val in self.items())) | |
return new | |
transpose.__doc__ = _spbase.transpose.__doc__ | |
def conjtransp(self): | |
"""Return the conjugate transpose.""" | |
if self.ndim == 1: | |
new = self.tocoo() | |
new.data = new.data.conjugate() | |
return new | |
M, N = self.shape | |
new = self._dok_container((N, M), dtype=self.dtype) | |
new._dict = {(right, left): np.conj(val) for (left, right), val in self.items()} | |
return new | |
def copy(self): | |
new = self._dok_container(self.shape, dtype=self.dtype) | |
new._dict.update(self._dict) | |
return new | |
copy.__doc__ = _spbase.copy.__doc__ | |
def fromkeys(cls, iterable, value=1, /): | |
tmp = dict.fromkeys(iterable, value) | |
if isinstance(next(iter(tmp)), tuple): | |
shape = tuple(max(idx) + 1 for idx in zip(*tmp)) | |
else: | |
shape = (max(tmp) + 1,) | |
result = cls(shape, dtype=type(value)) | |
result._dict = tmp | |
return result | |
def tocoo(self, copy=False): | |
nnz = self.nnz | |
if nnz == 0: | |
return self._coo_container(self.shape, dtype=self.dtype) | |
idx_dtype = self._get_index_dtype(maxval=max(self.shape)) | |
data = np.fromiter(self.values(), dtype=self.dtype, count=nnz) | |
# handle 1d keys specially b/c not a tuple | |
inds = zip(*self.keys()) if self.ndim > 1 else (self.keys(),) | |
coords = tuple(np.fromiter(ix, dtype=idx_dtype, count=nnz) for ix in inds) | |
A = self._coo_container((data, coords), shape=self.shape, dtype=self.dtype) | |
A.has_canonical_format = True | |
return A | |
tocoo.__doc__ = _spbase.tocoo.__doc__ | |
def todok(self, copy=False): | |
if copy: | |
return self.copy() | |
return self | |
todok.__doc__ = _spbase.todok.__doc__ | |
def tocsc(self, copy=False): | |
if self.ndim == 1: | |
raise NotImplementedError("tocsr() not valid for 1d sparse array") | |
return self.tocoo(copy=False).tocsc(copy=copy) | |
tocsc.__doc__ = _spbase.tocsc.__doc__ | |
def resize(self, *shape): | |
is_array = isinstance(self, sparray) | |
shape = check_shape(shape, allow_1d=is_array) | |
if len(shape) != len(self.shape): | |
# TODO implement resize across dimensions | |
raise NotImplementedError | |
if self.ndim == 1: | |
newN = shape[-1] | |
for i in list(self._dict): | |
if i >= newN: | |
del self._dict[i] | |
self._shape = shape | |
return | |
newM, newN = shape | |
M, N = self.shape | |
if newM < M or newN < N: | |
# Remove all elements outside new dimensions | |
for i, j in list(self.keys()): | |
if i >= newM or j >= newN: | |
del self._dict[i, j] | |
self._shape = shape | |
resize.__doc__ = _spbase.resize.__doc__ | |
# Added for 1d to avoid `tocsr` from _base.py | |
def astype(self, dtype, casting='unsafe', copy=True): | |
dtype = np.dtype(dtype) | |
if self.dtype != dtype: | |
result = self._dok_container(self.shape, dtype=dtype) | |
data = np.array(list(self._dict.values()), dtype=dtype) | |
result._dict = dict(zip(self._dict, data)) | |
return result | |
elif copy: | |
return self.copy() | |
return self | |
def isspmatrix_dok(x): | |
"""Is `x` of dok_array type? | |
Parameters | |
---------- | |
x | |
object to check for being a dok matrix | |
Returns | |
------- | |
bool | |
True if `x` is a dok matrix, False otherwise | |
Examples | |
-------- | |
>>> from scipy.sparse import dok_array, dok_matrix, coo_matrix, isspmatrix_dok | |
>>> isspmatrix_dok(dok_matrix([[5]])) | |
True | |
>>> isspmatrix_dok(dok_array([[5]])) | |
False | |
>>> isspmatrix_dok(coo_matrix([[5]])) | |
False | |
""" | |
return isinstance(x, dok_matrix) | |
# This namespace class separates array from matrix with isinstance | |
class dok_array(_dok_base, sparray): | |
""" | |
Dictionary Of Keys based sparse array. | |
This is an efficient structure for constructing sparse | |
arrays incrementally. | |
This can be instantiated in several ways: | |
dok_array(D) | |
where D is a 2-D ndarray | |
dok_array(S) | |
with another sparse array or matrix S (equivalent to S.todok()) | |
dok_array((M,N), [dtype]) | |
create the array with initial shape (M,N) | |
dtype is optional, defaulting to dtype='d' | |
Attributes | |
---------- | |
dtype : dtype | |
Data type of the array | |
shape : 2-tuple | |
Shape of the array | |
ndim : int | |
Number of dimensions (this is always 2) | |
nnz | |
Number of nonzero elements | |
size | |
T | |
Notes | |
----- | |
Sparse arrays can be used in arithmetic operations: they support | |
addition, subtraction, multiplication, division, and matrix power. | |
- Allows for efficient O(1) access of individual elements. | |
- Duplicates are not allowed. | |
- Can be efficiently converted to a coo_array once constructed. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.sparse import dok_array | |
>>> S = dok_array((5, 5), dtype=np.float32) | |
>>> for i in range(5): | |
... for j in range(5): | |
... S[i, j] = i + j # Update element | |
""" | |
class dok_matrix(spmatrix, _dok_base): | |
""" | |
Dictionary Of Keys based sparse matrix. | |
This is an efficient structure for constructing sparse | |
matrices incrementally. | |
This can be instantiated in several ways: | |
dok_matrix(D) | |
where D is a 2-D ndarray | |
dok_matrix(S) | |
with another sparse array or matrix S (equivalent to S.todok()) | |
dok_matrix((M,N), [dtype]) | |
create the matrix with initial shape (M,N) | |
dtype is optional, defaulting to dtype='d' | |
Attributes | |
---------- | |
dtype : dtype | |
Data type of the matrix | |
shape : 2-tuple | |
Shape of the matrix | |
ndim : int | |
Number of dimensions (this is always 2) | |
nnz | |
Number of nonzero elements | |
size | |
T | |
Notes | |
----- | |
Sparse matrices can be used in arithmetic operations: they support | |
addition, subtraction, multiplication, division, and matrix power. | |
- Allows for efficient O(1) access of individual elements. | |
- Duplicates are not allowed. | |
- Can be efficiently converted to a coo_matrix once constructed. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.sparse import dok_matrix | |
>>> S = dok_matrix((5, 5), dtype=np.float32) | |
>>> for i in range(5): | |
... for j in range(5): | |
... S[i, j] = i + j # Update element | |
""" | |
def set_shape(self, shape): | |
new_matrix = self.reshape(shape, copy=False).asformat(self.format) | |
self.__dict__ = new_matrix.__dict__ | |
def get_shape(self): | |
"""Get shape of a sparse matrix.""" | |
return self._shape | |
shape = property(fget=get_shape, fset=set_shape) | |
def __reversed__(self): | |
return self._dict.__reversed__() | |
def __or__(self, other): | |
if isinstance(other, _dok_base): | |
return self._dict | other._dict | |
return self._dict | other | |
def __ror__(self, other): | |
if isinstance(other, _dok_base): | |
return self._dict | other._dict | |
return self._dict | other | |
def __ior__(self, other): | |
if isinstance(other, _dok_base): | |
self._dict |= other._dict | |
else: | |
self._dict |= other | |
return self | |