peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/sparse
/_matrix_io.py
import numpy as np | |
import scipy as sp | |
__all__ = ['save_npz', 'load_npz'] | |
# Make loading safe vs. malicious input | |
PICKLE_KWARGS = dict(allow_pickle=False) | |
def save_npz(file, matrix, compressed=True): | |
""" Save a sparse matrix or array to a file using ``.npz`` format. | |
Parameters | |
---------- | |
file : str or file-like object | |
Either the file name (string) or an open file (file-like object) | |
where the data will be saved. If file is a string, the ``.npz`` | |
extension will be appended to the file name if it is not already | |
there. | |
matrix: spmatrix or sparray | |
The sparse matrix or array to save. | |
Supported formats: ``csc``, ``csr``, ``bsr``, ``dia`` or ``coo``. | |
compressed : bool, optional | |
Allow compressing the file. Default: True | |
See Also | |
-------- | |
scipy.sparse.load_npz: Load a sparse matrix from a file using ``.npz`` format. | |
numpy.savez: Save several arrays into a ``.npz`` archive. | |
numpy.savez_compressed : Save several arrays into a compressed ``.npz`` archive. | |
Examples | |
-------- | |
Store sparse matrix to disk, and load it again: | |
>>> import numpy as np | |
>>> import scipy as sp | |
>>> sparse_matrix = sp.sparse.csc_matrix([[0, 0, 3], [4, 0, 0]]) | |
>>> sparse_matrix | |
<2x3 sparse matrix of type '<class 'numpy.int64'>' | |
with 2 stored elements in Compressed Sparse Column format> | |
>>> sparse_matrix.toarray() | |
array([[0, 0, 3], | |
[4, 0, 0]], dtype=int64) | |
>>> sp.sparse.save_npz('/tmp/sparse_matrix.npz', sparse_matrix) | |
>>> sparse_matrix = sp.sparse.load_npz('/tmp/sparse_matrix.npz') | |
>>> sparse_matrix | |
<2x3 sparse matrix of type '<class 'numpy.int64'>' | |
with 2 stored elements in Compressed Sparse Column format> | |
>>> sparse_matrix.toarray() | |
array([[0, 0, 3], | |
[4, 0, 0]], dtype=int64) | |
""" | |
arrays_dict = {} | |
if matrix.format in ('csc', 'csr', 'bsr'): | |
arrays_dict.update(indices=matrix.indices, indptr=matrix.indptr) | |
elif matrix.format == 'dia': | |
arrays_dict.update(offsets=matrix.offsets) | |
elif matrix.format == 'coo': | |
arrays_dict.update(row=matrix.row, col=matrix.col) | |
else: | |
msg = f'Save is not implemented for sparse matrix of format {matrix.format}.' | |
raise NotImplementedError(msg) | |
arrays_dict.update( | |
format=matrix.format.encode('ascii'), | |
shape=matrix.shape, | |
data=matrix.data | |
) | |
if isinstance(matrix, sp.sparse.sparray): | |
arrays_dict.update(_is_array=True) | |
if compressed: | |
np.savez_compressed(file, **arrays_dict) | |
else: | |
np.savez(file, **arrays_dict) | |
def load_npz(file): | |
""" Load a sparse array/matrix from a file using ``.npz`` format. | |
Parameters | |
---------- | |
file : str or file-like object | |
Either the file name (string) or an open file (file-like object) | |
where the data will be loaded. | |
Returns | |
------- | |
result : csc_array, csr_array, bsr_array, dia_array or coo_array | |
A sparse array/matrix containing the loaded data. | |
Raises | |
------ | |
OSError | |
If the input file does not exist or cannot be read. | |
See Also | |
-------- | |
scipy.sparse.save_npz: Save a sparse array/matrix to a file using ``.npz`` format. | |
numpy.load: Load several arrays from a ``.npz`` archive. | |
Examples | |
-------- | |
Store sparse array/matrix to disk, and load it again: | |
>>> import numpy as np | |
>>> import scipy as sp | |
>>> sparse_array = sp.sparse.csc_array([[0, 0, 3], [4, 0, 0]]) | |
>>> sparse_array | |
<2x3 sparse array of type '<class 'numpy.int64'>' | |
with 2 stored elements in Compressed Sparse Column format> | |
>>> sparse_array.toarray() | |
array([[0, 0, 3], | |
[4, 0, 0]], dtype=int64) | |
>>> sp.sparse.save_npz('/tmp/sparse_array.npz', sparse_array) | |
>>> sparse_array = sp.sparse.load_npz('/tmp/sparse_array.npz') | |
>>> sparse_array | |
<2x3 sparse array of type '<class 'numpy.int64'>' | |
with 2 stored elements in Compressed Sparse Column format> | |
>>> sparse_array.toarray() | |
array([[0, 0, 3], | |
[4, 0, 0]], dtype=int64) | |
In this example we force the result to be csr_array from csr_matrix | |
>>> sparse_matrix = sp.sparse.csc_matrix([[0, 0, 3], [4, 0, 0]]) | |
>>> sp.sparse.save_npz('/tmp/sparse_matrix.npz', sparse_matrix) | |
>>> tmp = sp.sparse.load_npz('/tmp/sparse_matrix.npz') | |
>>> sparse_array = sp.sparse.csr_array(tmp) | |
""" | |
with np.load(file, **PICKLE_KWARGS) as loaded: | |
sparse_format = loaded.get('format') | |
if sparse_format is None: | |
raise ValueError(f'The file {file} does not contain ' | |
f'a sparse array or matrix.') | |
sparse_format = sparse_format.item() | |
if not isinstance(sparse_format, str): | |
# Play safe with Python 2 vs 3 backward compatibility; | |
# files saved with SciPy < 1.0.0 may contain unicode or bytes. | |
sparse_format = sparse_format.decode('ascii') | |
if loaded.get('_is_array'): | |
sparse_type = sparse_format + '_array' | |
else: | |
sparse_type = sparse_format + '_matrix' | |
try: | |
cls = getattr(sp.sparse, f'{sparse_type}') | |
except AttributeError as e: | |
raise ValueError(f'Unknown format "{sparse_type}"') from e | |
if sparse_format in ('csc', 'csr', 'bsr'): | |
return cls((loaded['data'], loaded['indices'], loaded['indptr']), | |
shape=loaded['shape']) | |
elif sparse_format == 'dia': | |
return cls((loaded['data'], loaded['offsets']), | |
shape=loaded['shape']) | |
elif sparse_format == 'coo': | |
return cls((loaded['data'], (loaded['row'], loaded['col'])), | |
shape=loaded['shape']) | |
else: | |
raise NotImplementedError(f'Load is not implemented for ' | |
f'sparse matrix of format {sparse_format}.') | |