peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/stats
/_kde.py
#------------------------------------------------------------------------------- | |
# | |
# Define classes for (uni/multi)-variate kernel density estimation. | |
# | |
# Currently, only Gaussian kernels are implemented. | |
# | |
# Written by: Robert Kern | |
# | |
# Date: 2004-08-09 | |
# | |
# Modified: 2005-02-10 by Robert Kern. | |
# Contributed to SciPy | |
# 2005-10-07 by Robert Kern. | |
# Some fixes to match the new scipy_core | |
# | |
# Copyright 2004-2005 by Enthought, Inc. | |
# | |
#------------------------------------------------------------------------------- | |
# Standard library imports. | |
import warnings | |
# SciPy imports. | |
from scipy import linalg, special | |
from scipy._lib._util import check_random_state | |
from numpy import (asarray, atleast_2d, reshape, zeros, newaxis, exp, pi, | |
sqrt, ravel, power, atleast_1d, squeeze, sum, transpose, | |
ones, cov) | |
import numpy as np | |
# Local imports. | |
from . import _mvn | |
from ._stats import gaussian_kernel_estimate, gaussian_kernel_estimate_log | |
# deprecated import to be removed in SciPy 1.13.0 | |
from scipy.special import logsumexp # noqa: F401 | |
__all__ = ['gaussian_kde'] | |
class gaussian_kde: | |
"""Representation of a kernel-density estimate using Gaussian kernels. | |
Kernel density estimation is a way to estimate the probability density | |
function (PDF) of a random variable in a non-parametric way. | |
`gaussian_kde` works for both uni-variate and multi-variate data. It | |
includes automatic bandwidth determination. The estimation works best for | |
a unimodal distribution; bimodal or multi-modal distributions tend to be | |
oversmoothed. | |
Parameters | |
---------- | |
dataset : array_like | |
Datapoints to estimate from. In case of univariate data this is a 1-D | |
array, otherwise a 2-D array with shape (# of dims, # of data). | |
bw_method : str, scalar or callable, optional | |
The method used to calculate the estimator bandwidth. This can be | |
'scott', 'silverman', a scalar constant or a callable. If a scalar, | |
this will be used directly as `kde.factor`. If a callable, it should | |
take a `gaussian_kde` instance as only parameter and return a scalar. | |
If None (default), 'scott' is used. See Notes for more details. | |
weights : array_like, optional | |
weights of datapoints. This must be the same shape as dataset. | |
If None (default), the samples are assumed to be equally weighted | |
Attributes | |
---------- | |
dataset : ndarray | |
The dataset with which `gaussian_kde` was initialized. | |
d : int | |
Number of dimensions. | |
n : int | |
Number of datapoints. | |
neff : int | |
Effective number of datapoints. | |
.. versionadded:: 1.2.0 | |
factor : float | |
The bandwidth factor, obtained from `kde.covariance_factor`. The square | |
of `kde.factor` multiplies the covariance matrix of the data in the kde | |
estimation. | |
covariance : ndarray | |
The covariance matrix of `dataset`, scaled by the calculated bandwidth | |
(`kde.factor`). | |
inv_cov : ndarray | |
The inverse of `covariance`. | |
Methods | |
------- | |
evaluate | |
__call__ | |
integrate_gaussian | |
integrate_box_1d | |
integrate_box | |
integrate_kde | |
logpdf | |
resample | |
set_bandwidth | |
covariance_factor | |
Notes | |
----- | |
Bandwidth selection strongly influences the estimate obtained from the KDE | |
(much more so than the actual shape of the kernel). Bandwidth selection | |
can be done by a "rule of thumb", by cross-validation, by "plug-in | |
methods" or by other means; see [3]_, [4]_ for reviews. `gaussian_kde` | |
uses a rule of thumb, the default is Scott's Rule. | |
Scott's Rule [1]_, implemented as `scotts_factor`, is:: | |
n**(-1./(d+4)), | |
with ``n`` the number of data points and ``d`` the number of dimensions. | |
In the case of unequally weighted points, `scotts_factor` becomes:: | |
neff**(-1./(d+4)), | |
with ``neff`` the effective number of datapoints. | |
Silverman's Rule [2]_, implemented as `silverman_factor`, is:: | |
(n * (d + 2) / 4.)**(-1. / (d + 4)). | |
or in the case of unequally weighted points:: | |
(neff * (d + 2) / 4.)**(-1. / (d + 4)). | |
Good general descriptions of kernel density estimation can be found in [1]_ | |
and [2]_, the mathematics for this multi-dimensional implementation can be | |
found in [1]_. | |
With a set of weighted samples, the effective number of datapoints ``neff`` | |
is defined by:: | |
neff = sum(weights)^2 / sum(weights^2) | |
as detailed in [5]_. | |
`gaussian_kde` does not currently support data that lies in a | |
lower-dimensional subspace of the space in which it is expressed. For such | |
data, consider performing principle component analysis / dimensionality | |
reduction and using `gaussian_kde` with the transformed data. | |
References | |
---------- | |
.. [1] D.W. Scott, "Multivariate Density Estimation: Theory, Practice, and | |
Visualization", John Wiley & Sons, New York, Chicester, 1992. | |
.. [2] B.W. Silverman, "Density Estimation for Statistics and Data | |
Analysis", Vol. 26, Monographs on Statistics and Applied Probability, | |
Chapman and Hall, London, 1986. | |
.. [3] B.A. Turlach, "Bandwidth Selection in Kernel Density Estimation: A | |
Review", CORE and Institut de Statistique, Vol. 19, pp. 1-33, 1993. | |
.. [4] D.M. Bashtannyk and R.J. Hyndman, "Bandwidth selection for kernel | |
conditional density estimation", Computational Statistics & Data | |
Analysis, Vol. 36, pp. 279-298, 2001. | |
.. [5] Gray P. G., 1969, Journal of the Royal Statistical Society. | |
Series A (General), 132, 272 | |
Examples | |
-------- | |
Generate some random two-dimensional data: | |
>>> import numpy as np | |
>>> from scipy import stats | |
>>> def measure(n): | |
... "Measurement model, return two coupled measurements." | |
... m1 = np.random.normal(size=n) | |
... m2 = np.random.normal(scale=0.5, size=n) | |
... return m1+m2, m1-m2 | |
>>> m1, m2 = measure(2000) | |
>>> xmin = m1.min() | |
>>> xmax = m1.max() | |
>>> ymin = m2.min() | |
>>> ymax = m2.max() | |
Perform a kernel density estimate on the data: | |
>>> X, Y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j] | |
>>> positions = np.vstack([X.ravel(), Y.ravel()]) | |
>>> values = np.vstack([m1, m2]) | |
>>> kernel = stats.gaussian_kde(values) | |
>>> Z = np.reshape(kernel(positions).T, X.shape) | |
Plot the results: | |
>>> import matplotlib.pyplot as plt | |
>>> fig, ax = plt.subplots() | |
>>> ax.imshow(np.rot90(Z), cmap=plt.cm.gist_earth_r, | |
... extent=[xmin, xmax, ymin, ymax]) | |
>>> ax.plot(m1, m2, 'k.', markersize=2) | |
>>> ax.set_xlim([xmin, xmax]) | |
>>> ax.set_ylim([ymin, ymax]) | |
>>> plt.show() | |
""" | |
def __init__(self, dataset, bw_method=None, weights=None): | |
self.dataset = atleast_2d(asarray(dataset)) | |
if not self.dataset.size > 1: | |
raise ValueError("`dataset` input should have multiple elements.") | |
self.d, self.n = self.dataset.shape | |
if weights is not None: | |
self._weights = atleast_1d(weights).astype(float) | |
self._weights /= sum(self._weights) | |
if self.weights.ndim != 1: | |
raise ValueError("`weights` input should be one-dimensional.") | |
if len(self._weights) != self.n: | |
raise ValueError("`weights` input should be of length n") | |
self._neff = 1/sum(self._weights**2) | |
# This can be converted to a warning once gh-10205 is resolved | |
if self.d > self.n: | |
msg = ("Number of dimensions is greater than number of samples. " | |
"This results in a singular data covariance matrix, which " | |
"cannot be treated using the algorithms implemented in " | |
"`gaussian_kde`. Note that `gaussian_kde` interprets each " | |
"*column* of `dataset` to be a point; consider transposing " | |
"the input to `dataset`.") | |
raise ValueError(msg) | |
try: | |
self.set_bandwidth(bw_method=bw_method) | |
except linalg.LinAlgError as e: | |
msg = ("The data appears to lie in a lower-dimensional subspace " | |
"of the space in which it is expressed. This has resulted " | |
"in a singular data covariance matrix, which cannot be " | |
"treated using the algorithms implemented in " | |
"`gaussian_kde`. Consider performing principle component " | |
"analysis / dimensionality reduction and using " | |
"`gaussian_kde` with the transformed data.") | |
raise linalg.LinAlgError(msg) from e | |
def evaluate(self, points): | |
"""Evaluate the estimated pdf on a set of points. | |
Parameters | |
---------- | |
points : (# of dimensions, # of points)-array | |
Alternatively, a (# of dimensions,) vector can be passed in and | |
treated as a single point. | |
Returns | |
------- | |
values : (# of points,)-array | |
The values at each point. | |
Raises | |
------ | |
ValueError : if the dimensionality of the input points is different than | |
the dimensionality of the KDE. | |
""" | |
points = atleast_2d(asarray(points)) | |
d, m = points.shape | |
if d != self.d: | |
if d == 1 and m == self.d: | |
# points was passed in as a row vector | |
points = reshape(points, (self.d, 1)) | |
m = 1 | |
else: | |
msg = (f"points have dimension {d}, " | |
f"dataset has dimension {self.d}") | |
raise ValueError(msg) | |
output_dtype, spec = _get_output_dtype(self.covariance, points) | |
result = gaussian_kernel_estimate[spec]( | |
self.dataset.T, self.weights[:, None], | |
points.T, self.cho_cov, output_dtype) | |
return result[:, 0] | |
__call__ = evaluate | |
def integrate_gaussian(self, mean, cov): | |
""" | |
Multiply estimated density by a multivariate Gaussian and integrate | |
over the whole space. | |
Parameters | |
---------- | |
mean : aray_like | |
A 1-D array, specifying the mean of the Gaussian. | |
cov : array_like | |
A 2-D array, specifying the covariance matrix of the Gaussian. | |
Returns | |
------- | |
result : scalar | |
The value of the integral. | |
Raises | |
------ | |
ValueError | |
If the mean or covariance of the input Gaussian differs from | |
the KDE's dimensionality. | |
""" | |
mean = atleast_1d(squeeze(mean)) | |
cov = atleast_2d(cov) | |
if mean.shape != (self.d,): | |
raise ValueError("mean does not have dimension %s" % self.d) | |
if cov.shape != (self.d, self.d): | |
raise ValueError("covariance does not have dimension %s" % self.d) | |
# make mean a column vector | |
mean = mean[:, newaxis] | |
sum_cov = self.covariance + cov | |
# This will raise LinAlgError if the new cov matrix is not s.p.d | |
# cho_factor returns (ndarray, bool) where bool is a flag for whether | |
# or not ndarray is upper or lower triangular | |
sum_cov_chol = linalg.cho_factor(sum_cov) | |
diff = self.dataset - mean | |
tdiff = linalg.cho_solve(sum_cov_chol, diff) | |
sqrt_det = np.prod(np.diagonal(sum_cov_chol[0])) | |
norm_const = power(2 * pi, sum_cov.shape[0] / 2.0) * sqrt_det | |
energies = sum(diff * tdiff, axis=0) / 2.0 | |
result = sum(exp(-energies)*self.weights, axis=0) / norm_const | |
return result | |
def integrate_box_1d(self, low, high): | |
""" | |
Computes the integral of a 1D pdf between two bounds. | |
Parameters | |
---------- | |
low : scalar | |
Lower bound of integration. | |
high : scalar | |
Upper bound of integration. | |
Returns | |
------- | |
value : scalar | |
The result of the integral. | |
Raises | |
------ | |
ValueError | |
If the KDE is over more than one dimension. | |
""" | |
if self.d != 1: | |
raise ValueError("integrate_box_1d() only handles 1D pdfs") | |
stdev = ravel(sqrt(self.covariance))[0] | |
normalized_low = ravel((low - self.dataset) / stdev) | |
normalized_high = ravel((high - self.dataset) / stdev) | |
value = np.sum(self.weights*( | |
special.ndtr(normalized_high) - | |
special.ndtr(normalized_low))) | |
return value | |
def integrate_box(self, low_bounds, high_bounds, maxpts=None): | |
"""Computes the integral of a pdf over a rectangular interval. | |
Parameters | |
---------- | |
low_bounds : array_like | |
A 1-D array containing the lower bounds of integration. | |
high_bounds : array_like | |
A 1-D array containing the upper bounds of integration. | |
maxpts : int, optional | |
The maximum number of points to use for integration. | |
Returns | |
------- | |
value : scalar | |
The result of the integral. | |
""" | |
if maxpts is not None: | |
extra_kwds = {'maxpts': maxpts} | |
else: | |
extra_kwds = {} | |
value, inform = _mvn.mvnun_weighted(low_bounds, high_bounds, | |
self.dataset, self.weights, | |
self.covariance, **extra_kwds) | |
if inform: | |
msg = ('An integral in _mvn.mvnun requires more points than %s' % | |
(self.d * 1000)) | |
warnings.warn(msg, stacklevel=2) | |
return value | |
def integrate_kde(self, other): | |
""" | |
Computes the integral of the product of this kernel density estimate | |
with another. | |
Parameters | |
---------- | |
other : gaussian_kde instance | |
The other kde. | |
Returns | |
------- | |
value : scalar | |
The result of the integral. | |
Raises | |
------ | |
ValueError | |
If the KDEs have different dimensionality. | |
""" | |
if other.d != self.d: | |
raise ValueError("KDEs are not the same dimensionality") | |
# we want to iterate over the smallest number of points | |
if other.n < self.n: | |
small = other | |
large = self | |
else: | |
small = self | |
large = other | |
sum_cov = small.covariance + large.covariance | |
sum_cov_chol = linalg.cho_factor(sum_cov) | |
result = 0.0 | |
for i in range(small.n): | |
mean = small.dataset[:, i, newaxis] | |
diff = large.dataset - mean | |
tdiff = linalg.cho_solve(sum_cov_chol, diff) | |
energies = sum(diff * tdiff, axis=0) / 2.0 | |
result += sum(exp(-energies)*large.weights, axis=0)*small.weights[i] | |
sqrt_det = np.prod(np.diagonal(sum_cov_chol[0])) | |
norm_const = power(2 * pi, sum_cov.shape[0] / 2.0) * sqrt_det | |
result /= norm_const | |
return result | |
def resample(self, size=None, seed=None): | |
"""Randomly sample a dataset from the estimated pdf. | |
Parameters | |
---------- | |
size : int, optional | |
The number of samples to draw. If not provided, then the size is | |
the same as the effective number of samples in the underlying | |
dataset. | |
seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional | |
If `seed` is None (or `np.random`), the `numpy.random.RandomState` | |
singleton is used. | |
If `seed` is an int, a new ``RandomState`` instance is used, | |
seeded with `seed`. | |
If `seed` is already a ``Generator`` or ``RandomState`` instance then | |
that instance is used. | |
Returns | |
------- | |
resample : (self.d, `size`) ndarray | |
The sampled dataset. | |
""" # numpy/numpydoc#87 # noqa: E501 | |
if size is None: | |
size = int(self.neff) | |
random_state = check_random_state(seed) | |
norm = transpose(random_state.multivariate_normal( | |
zeros((self.d,), float), self.covariance, size=size | |
)) | |
indices = random_state.choice(self.n, size=size, p=self.weights) | |
means = self.dataset[:, indices] | |
return means + norm | |
def scotts_factor(self): | |
"""Compute Scott's factor. | |
Returns | |
------- | |
s : float | |
Scott's factor. | |
""" | |
return power(self.neff, -1./(self.d+4)) | |
def silverman_factor(self): | |
"""Compute the Silverman factor. | |
Returns | |
------- | |
s : float | |
The silverman factor. | |
""" | |
return power(self.neff*(self.d+2.0)/4.0, -1./(self.d+4)) | |
# Default method to calculate bandwidth, can be overwritten by subclass | |
covariance_factor = scotts_factor | |
covariance_factor.__doc__ = """Computes the coefficient (`kde.factor`) that | |
multiplies the data covariance matrix to obtain the kernel covariance | |
matrix. The default is `scotts_factor`. A subclass can overwrite this | |
method to provide a different method, or set it through a call to | |
`kde.set_bandwidth`.""" | |
def set_bandwidth(self, bw_method=None): | |
"""Compute the estimator bandwidth with given method. | |
The new bandwidth calculated after a call to `set_bandwidth` is used | |
for subsequent evaluations of the estimated density. | |
Parameters | |
---------- | |
bw_method : str, scalar or callable, optional | |
The method used to calculate the estimator bandwidth. This can be | |
'scott', 'silverman', a scalar constant or a callable. If a | |
scalar, this will be used directly as `kde.factor`. If a callable, | |
it should take a `gaussian_kde` instance as only parameter and | |
return a scalar. If None (default), nothing happens; the current | |
`kde.covariance_factor` method is kept. | |
Notes | |
----- | |
.. versionadded:: 0.11 | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> import scipy.stats as stats | |
>>> x1 = np.array([-7, -5, 1, 4, 5.]) | |
>>> kde = stats.gaussian_kde(x1) | |
>>> xs = np.linspace(-10, 10, num=50) | |
>>> y1 = kde(xs) | |
>>> kde.set_bandwidth(bw_method='silverman') | |
>>> y2 = kde(xs) | |
>>> kde.set_bandwidth(bw_method=kde.factor / 3.) | |
>>> y3 = kde(xs) | |
>>> import matplotlib.pyplot as plt | |
>>> fig, ax = plt.subplots() | |
>>> ax.plot(x1, np.full(x1.shape, 1 / (4. * x1.size)), 'bo', | |
... label='Data points (rescaled)') | |
>>> ax.plot(xs, y1, label='Scott (default)') | |
>>> ax.plot(xs, y2, label='Silverman') | |
>>> ax.plot(xs, y3, label='Const (1/3 * Silverman)') | |
>>> ax.legend() | |
>>> plt.show() | |
""" | |
if bw_method is None: | |
pass | |
elif bw_method == 'scott': | |
self.covariance_factor = self.scotts_factor | |
elif bw_method == 'silverman': | |
self.covariance_factor = self.silverman_factor | |
elif np.isscalar(bw_method) and not isinstance(bw_method, str): | |
self._bw_method = 'use constant' | |
self.covariance_factor = lambda: bw_method | |
elif callable(bw_method): | |
self._bw_method = bw_method | |
self.covariance_factor = lambda: self._bw_method(self) | |
else: | |
msg = "`bw_method` should be 'scott', 'silverman', a scalar " \ | |
"or a callable." | |
raise ValueError(msg) | |
self._compute_covariance() | |
def _compute_covariance(self): | |
"""Computes the covariance matrix for each Gaussian kernel using | |
covariance_factor(). | |
""" | |
self.factor = self.covariance_factor() | |
# Cache covariance and Cholesky decomp of covariance | |
if not hasattr(self, '_data_cho_cov'): | |
self._data_covariance = atleast_2d(cov(self.dataset, rowvar=1, | |
bias=False, | |
aweights=self.weights)) | |
self._data_cho_cov = linalg.cholesky(self._data_covariance, | |
lower=True) | |
self.covariance = self._data_covariance * self.factor**2 | |
self.cho_cov = (self._data_cho_cov * self.factor).astype(np.float64) | |
self.log_det = 2*np.log(np.diag(self.cho_cov | |
* np.sqrt(2*pi))).sum() | |
def inv_cov(self): | |
# Re-compute from scratch each time because I'm not sure how this is | |
# used in the wild. (Perhaps users change the `dataset`, since it's | |
# not a private attribute?) `_compute_covariance` used to recalculate | |
# all these, so we'll recalculate everything now that this is a | |
# a property. | |
self.factor = self.covariance_factor() | |
self._data_covariance = atleast_2d(cov(self.dataset, rowvar=1, | |
bias=False, aweights=self.weights)) | |
return linalg.inv(self._data_covariance) / self.factor**2 | |
def pdf(self, x): | |
""" | |
Evaluate the estimated pdf on a provided set of points. | |
Notes | |
----- | |
This is an alias for `gaussian_kde.evaluate`. See the ``evaluate`` | |
docstring for more details. | |
""" | |
return self.evaluate(x) | |
def logpdf(self, x): | |
""" | |
Evaluate the log of the estimated pdf on a provided set of points. | |
""" | |
points = atleast_2d(x) | |
d, m = points.shape | |
if d != self.d: | |
if d == 1 and m == self.d: | |
# points was passed in as a row vector | |
points = reshape(points, (self.d, 1)) | |
m = 1 | |
else: | |
msg = (f"points have dimension {d}, " | |
f"dataset has dimension {self.d}") | |
raise ValueError(msg) | |
output_dtype, spec = _get_output_dtype(self.covariance, points) | |
result = gaussian_kernel_estimate_log[spec]( | |
self.dataset.T, self.weights[:, None], | |
points.T, self.cho_cov, output_dtype) | |
return result[:, 0] | |
def marginal(self, dimensions): | |
"""Return a marginal KDE distribution | |
Parameters | |
---------- | |
dimensions : int or 1-d array_like | |
The dimensions of the multivariate distribution corresponding | |
with the marginal variables, that is, the indices of the dimensions | |
that are being retained. The other dimensions are marginalized out. | |
Returns | |
------- | |
marginal_kde : gaussian_kde | |
An object representing the marginal distribution. | |
Notes | |
----- | |
.. versionadded:: 1.10.0 | |
""" | |
dims = np.atleast_1d(dimensions) | |
if not np.issubdtype(dims.dtype, np.integer): | |
msg = ("Elements of `dimensions` must be integers - the indices " | |
"of the marginal variables being retained.") | |
raise ValueError(msg) | |
n = len(self.dataset) # number of dimensions | |
original_dims = dims.copy() | |
dims[dims < 0] = n + dims[dims < 0] | |
if len(np.unique(dims)) != len(dims): | |
msg = ("All elements of `dimensions` must be unique.") | |
raise ValueError(msg) | |
i_invalid = (dims < 0) | (dims >= n) | |
if np.any(i_invalid): | |
msg = (f"Dimensions {original_dims[i_invalid]} are invalid " | |
f"for a distribution in {n} dimensions.") | |
raise ValueError(msg) | |
dataset = self.dataset[dims] | |
weights = self.weights | |
return gaussian_kde(dataset, bw_method=self.covariance_factor(), | |
weights=weights) | |
def weights(self): | |
try: | |
return self._weights | |
except AttributeError: | |
self._weights = ones(self.n)/self.n | |
return self._weights | |
def neff(self): | |
try: | |
return self._neff | |
except AttributeError: | |
self._neff = 1/sum(self.weights**2) | |
return self._neff | |
def _get_output_dtype(covariance, points): | |
""" | |
Calculates the output dtype and the "spec" (=C type name). | |
This was necessary in order to deal with the fused types in the Cython | |
routine `gaussian_kernel_estimate`. See gh-10824 for details. | |
""" | |
output_dtype = np.common_type(covariance, points) | |
itemsize = np.dtype(output_dtype).itemsize | |
if itemsize == 4: | |
spec = 'float' | |
elif itemsize == 8: | |
spec = 'double' | |
elif itemsize in (12, 16): | |
spec = 'long double' | |
else: | |
raise ValueError( | |
f"{output_dtype} has unexpected item size: {itemsize}" | |
) | |
return output_dtype, spec | |