peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/datasets
/_lfw.py
"""Labeled Faces in the Wild (LFW) dataset | |
This dataset is a collection of JPEG pictures of famous people collected | |
over the internet, all details are available on the official website: | |
http://vis-www.cs.umass.edu/lfw/ | |
""" | |
# Copyright (c) 2011 Olivier Grisel <[email protected]> | |
# License: BSD 3 clause | |
import logging | |
from numbers import Integral, Real | |
from os import PathLike, listdir, makedirs, remove | |
from os.path import exists, isdir, join | |
import numpy as np | |
from joblib import Memory | |
from ..utils import Bunch | |
from ..utils._param_validation import Hidden, Interval, StrOptions, validate_params | |
from ._base import ( | |
RemoteFileMetadata, | |
_fetch_remote, | |
get_data_home, | |
load_descr, | |
) | |
logger = logging.getLogger(__name__) | |
# The original data can be found in: | |
# http://vis-www.cs.umass.edu/lfw/lfw.tgz | |
ARCHIVE = RemoteFileMetadata( | |
filename="lfw.tgz", | |
url="https://ndownloader.figshare.com/files/5976018", | |
checksum="055f7d9c632d7370e6fb4afc7468d40f970c34a80d4c6f50ffec63f5a8d536c0", | |
) | |
# The original funneled data can be found in: | |
# http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz | |
FUNNELED_ARCHIVE = RemoteFileMetadata( | |
filename="lfw-funneled.tgz", | |
url="https://ndownloader.figshare.com/files/5976015", | |
checksum="b47c8422c8cded889dc5a13418c4bc2abbda121092b3533a83306f90d900100a", | |
) | |
# The original target data can be found in: | |
# http://vis-www.cs.umass.edu/lfw/pairsDevTrain.txt', | |
# http://vis-www.cs.umass.edu/lfw/pairsDevTest.txt', | |
# http://vis-www.cs.umass.edu/lfw/pairs.txt', | |
TARGETS = ( | |
RemoteFileMetadata( | |
filename="pairsDevTrain.txt", | |
url="https://ndownloader.figshare.com/files/5976012", | |
checksum="1d454dada7dfeca0e7eab6f65dc4e97a6312d44cf142207be28d688be92aabfa", | |
), | |
RemoteFileMetadata( | |
filename="pairsDevTest.txt", | |
url="https://ndownloader.figshare.com/files/5976009", | |
checksum="7cb06600ea8b2814ac26e946201cdb304296262aad67d046a16a7ec85d0ff87c", | |
), | |
RemoteFileMetadata( | |
filename="pairs.txt", | |
url="https://ndownloader.figshare.com/files/5976006", | |
checksum="ea42330c62c92989f9d7c03237ed5d591365e89b3e649747777b70e692dc1592", | |
), | |
) | |
# | |
# Common private utilities for data fetching from the original LFW website | |
# local disk caching, and image decoding. | |
# | |
def _check_fetch_lfw(data_home=None, funneled=True, download_if_missing=True): | |
"""Helper function to download any missing LFW data""" | |
data_home = get_data_home(data_home=data_home) | |
lfw_home = join(data_home, "lfw_home") | |
if not exists(lfw_home): | |
makedirs(lfw_home) | |
for target in TARGETS: | |
target_filepath = join(lfw_home, target.filename) | |
if not exists(target_filepath): | |
if download_if_missing: | |
logger.info("Downloading LFW metadata: %s", target.url) | |
_fetch_remote(target, dirname=lfw_home) | |
else: | |
raise OSError("%s is missing" % target_filepath) | |
if funneled: | |
data_folder_path = join(lfw_home, "lfw_funneled") | |
archive = FUNNELED_ARCHIVE | |
else: | |
data_folder_path = join(lfw_home, "lfw") | |
archive = ARCHIVE | |
if not exists(data_folder_path): | |
archive_path = join(lfw_home, archive.filename) | |
if not exists(archive_path): | |
if download_if_missing: | |
logger.info("Downloading LFW data (~200MB): %s", archive.url) | |
_fetch_remote(archive, dirname=lfw_home) | |
else: | |
raise OSError("%s is missing" % archive_path) | |
import tarfile | |
logger.debug("Decompressing the data archive to %s", data_folder_path) | |
tarfile.open(archive_path, "r:gz").extractall(path=lfw_home) | |
remove(archive_path) | |
return lfw_home, data_folder_path | |
def _load_imgs(file_paths, slice_, color, resize): | |
"""Internally used to load images""" | |
try: | |
from PIL import Image | |
except ImportError: | |
raise ImportError( | |
"The Python Imaging Library (PIL) is required to load data " | |
"from jpeg files. Please refer to " | |
"https://pillow.readthedocs.io/en/stable/installation.html " | |
"for installing PIL." | |
) | |
# compute the portion of the images to load to respect the slice_ parameter | |
# given by the caller | |
default_slice = (slice(0, 250), slice(0, 250)) | |
if slice_ is None: | |
slice_ = default_slice | |
else: | |
slice_ = tuple(s or ds for s, ds in zip(slice_, default_slice)) | |
h_slice, w_slice = slice_ | |
h = (h_slice.stop - h_slice.start) // (h_slice.step or 1) | |
w = (w_slice.stop - w_slice.start) // (w_slice.step or 1) | |
if resize is not None: | |
resize = float(resize) | |
h = int(resize * h) | |
w = int(resize * w) | |
# allocate some contiguous memory to host the decoded image slices | |
n_faces = len(file_paths) | |
if not color: | |
faces = np.zeros((n_faces, h, w), dtype=np.float32) | |
else: | |
faces = np.zeros((n_faces, h, w, 3), dtype=np.float32) | |
# iterate over the collected file path to load the jpeg files as numpy | |
# arrays | |
for i, file_path in enumerate(file_paths): | |
if i % 1000 == 0: | |
logger.debug("Loading face #%05d / %05d", i + 1, n_faces) | |
# Checks if jpeg reading worked. Refer to issue #3594 for more | |
# details. | |
pil_img = Image.open(file_path) | |
pil_img = pil_img.crop( | |
(w_slice.start, h_slice.start, w_slice.stop, h_slice.stop) | |
) | |
if resize is not None: | |
pil_img = pil_img.resize((w, h)) | |
face = np.asarray(pil_img, dtype=np.float32) | |
if face.ndim == 0: | |
raise RuntimeError( | |
"Failed to read the image file %s, " | |
"Please make sure that libjpeg is installed" % file_path | |
) | |
face /= 255.0 # scale uint8 coded colors to the [0.0, 1.0] floats | |
if not color: | |
# average the color channels to compute a gray levels | |
# representation | |
face = face.mean(axis=2) | |
faces[i, ...] = face | |
return faces | |
# | |
# Task #1: Face Identification on picture with names | |
# | |
def _fetch_lfw_people( | |
data_folder_path, slice_=None, color=False, resize=None, min_faces_per_person=0 | |
): | |
"""Perform the actual data loading for the lfw people dataset | |
This operation is meant to be cached by a joblib wrapper. | |
""" | |
# scan the data folder content to retain people with more that | |
# `min_faces_per_person` face pictures | |
person_names, file_paths = [], [] | |
for person_name in sorted(listdir(data_folder_path)): | |
folder_path = join(data_folder_path, person_name) | |
if not isdir(folder_path): | |
continue | |
paths = [join(folder_path, f) for f in sorted(listdir(folder_path))] | |
n_pictures = len(paths) | |
if n_pictures >= min_faces_per_person: | |
person_name = person_name.replace("_", " ") | |
person_names.extend([person_name] * n_pictures) | |
file_paths.extend(paths) | |
n_faces = len(file_paths) | |
if n_faces == 0: | |
raise ValueError( | |
"min_faces_per_person=%d is too restrictive" % min_faces_per_person | |
) | |
target_names = np.unique(person_names) | |
target = np.searchsorted(target_names, person_names) | |
faces = _load_imgs(file_paths, slice_, color, resize) | |
# shuffle the faces with a deterministic RNG scheme to avoid having | |
# all faces of the same person in a row, as it would break some | |
# cross validation and learning algorithms such as SGD and online | |
# k-means that make an IID assumption | |
indices = np.arange(n_faces) | |
np.random.RandomState(42).shuffle(indices) | |
faces, target = faces[indices], target[indices] | |
return faces, target, target_names | |
def fetch_lfw_people( | |
*, | |
data_home=None, | |
funneled=True, | |
resize=0.5, | |
min_faces_per_person=0, | |
color=False, | |
slice_=(slice(70, 195), slice(78, 172)), | |
download_if_missing=True, | |
return_X_y=False, | |
): | |
"""Load the Labeled Faces in the Wild (LFW) people dataset \ | |
(classification). | |
Download it if necessary. | |
================= ======================= | |
Classes 5749 | |
Samples total 13233 | |
Dimensionality 5828 | |
Features real, between 0 and 255 | |
================= ======================= | |
Read more in the :ref:`User Guide <labeled_faces_in_the_wild_dataset>`. | |
Parameters | |
---------- | |
data_home : str or path-like, default=None | |
Specify another download and cache folder for the datasets. By default | |
all scikit-learn data is stored in '~/scikit_learn_data' subfolders. | |
funneled : bool, default=True | |
Download and use the funneled variant of the dataset. | |
resize : float or None, default=0.5 | |
Ratio used to resize the each face picture. If `None`, no resizing is | |
performed. | |
min_faces_per_person : int, default=None | |
The extracted dataset will only retain pictures of people that have at | |
least `min_faces_per_person` different pictures. | |
color : bool, default=False | |
Keep the 3 RGB channels instead of averaging them to a single | |
gray level channel. If color is True the shape of the data has | |
one more dimension than the shape with color = False. | |
slice_ : tuple of slice, default=(slice(70, 195), slice(78, 172)) | |
Provide a custom 2D slice (height, width) to extract the | |
'interesting' part of the jpeg files and avoid use statistical | |
correlation from the background. | |
download_if_missing : bool, default=True | |
If False, raise an OSError if the data is not locally available | |
instead of trying to download the data from the source site. | |
return_X_y : bool, default=False | |
If True, returns ``(dataset.data, dataset.target)`` instead of a Bunch | |
object. See below for more information about the `dataset.data` and | |
`dataset.target` object. | |
.. versionadded:: 0.20 | |
Returns | |
------- | |
dataset : :class:`~sklearn.utils.Bunch` | |
Dictionary-like object, with the following attributes. | |
data : numpy array of shape (13233, 2914) | |
Each row corresponds to a ravelled face image | |
of original size 62 x 47 pixels. | |
Changing the ``slice_`` or resize parameters will change the | |
shape of the output. | |
images : numpy array of shape (13233, 62, 47) | |
Each row is a face image corresponding to one of the 5749 people in | |
the dataset. Changing the ``slice_`` | |
or resize parameters will change the shape of the output. | |
target : numpy array of shape (13233,) | |
Labels associated to each face image. | |
Those labels range from 0-5748 and correspond to the person IDs. | |
target_names : numpy array of shape (5749,) | |
Names of all persons in the dataset. | |
Position in array corresponds to the person ID in the target array. | |
DESCR : str | |
Description of the Labeled Faces in the Wild (LFW) dataset. | |
(data, target) : tuple if ``return_X_y`` is True | |
A tuple of two ndarray. The first containing a 2D array of | |
shape (n_samples, n_features) with each row representing one | |
sample and each column representing the features. The second | |
ndarray of shape (n_samples,) containing the target samples. | |
.. versionadded:: 0.20 | |
""" | |
lfw_home, data_folder_path = _check_fetch_lfw( | |
data_home=data_home, funneled=funneled, download_if_missing=download_if_missing | |
) | |
logger.debug("Loading LFW people faces from %s", lfw_home) | |
# wrap the loader in a memoizing function that will return memmaped data | |
# arrays for optimal memory usage | |
m = Memory(location=lfw_home, compress=6, verbose=0) | |
load_func = m.cache(_fetch_lfw_people) | |
# load and memoize the pairs as np arrays | |
faces, target, target_names = load_func( | |
data_folder_path, | |
resize=resize, | |
min_faces_per_person=min_faces_per_person, | |
color=color, | |
slice_=slice_, | |
) | |
X = faces.reshape(len(faces), -1) | |
fdescr = load_descr("lfw.rst") | |
if return_X_y: | |
return X, target | |
# pack the results as a Bunch instance | |
return Bunch( | |
data=X, images=faces, target=target, target_names=target_names, DESCR=fdescr | |
) | |
# | |
# Task #2: Face Verification on pairs of face pictures | |
# | |
def _fetch_lfw_pairs( | |
index_file_path, data_folder_path, slice_=None, color=False, resize=None | |
): | |
"""Perform the actual data loading for the LFW pairs dataset | |
This operation is meant to be cached by a joblib wrapper. | |
""" | |
# parse the index file to find the number of pairs to be able to allocate | |
# the right amount of memory before starting to decode the jpeg files | |
with open(index_file_path, "rb") as index_file: | |
split_lines = [ln.decode().strip().split("\t") for ln in index_file] | |
pair_specs = [sl for sl in split_lines if len(sl) > 2] | |
n_pairs = len(pair_specs) | |
# iterating over the metadata lines for each pair to find the filename to | |
# decode and load in memory | |
target = np.zeros(n_pairs, dtype=int) | |
file_paths = list() | |
for i, components in enumerate(pair_specs): | |
if len(components) == 3: | |
target[i] = 1 | |
pair = ( | |
(components[0], int(components[1]) - 1), | |
(components[0], int(components[2]) - 1), | |
) | |
elif len(components) == 4: | |
target[i] = 0 | |
pair = ( | |
(components[0], int(components[1]) - 1), | |
(components[2], int(components[3]) - 1), | |
) | |
else: | |
raise ValueError("invalid line %d: %r" % (i + 1, components)) | |
for j, (name, idx) in enumerate(pair): | |
try: | |
person_folder = join(data_folder_path, name) | |
except TypeError: | |
person_folder = join(data_folder_path, str(name, "UTF-8")) | |
filenames = list(sorted(listdir(person_folder))) | |
file_path = join(person_folder, filenames[idx]) | |
file_paths.append(file_path) | |
pairs = _load_imgs(file_paths, slice_, color, resize) | |
shape = list(pairs.shape) | |
n_faces = shape.pop(0) | |
shape.insert(0, 2) | |
shape.insert(0, n_faces // 2) | |
pairs.shape = shape | |
return pairs, target, np.array(["Different persons", "Same person"]) | |
def fetch_lfw_pairs( | |
*, | |
subset="train", | |
data_home=None, | |
funneled=True, | |
resize=0.5, | |
color=False, | |
slice_=(slice(70, 195), slice(78, 172)), | |
download_if_missing=True, | |
): | |
"""Load the Labeled Faces in the Wild (LFW) pairs dataset (classification). | |
Download it if necessary. | |
================= ======================= | |
Classes 2 | |
Samples total 13233 | |
Dimensionality 5828 | |
Features real, between 0 and 255 | |
================= ======================= | |
In the official `README.txt`_ this task is described as the | |
"Restricted" task. As I am not sure as to implement the | |
"Unrestricted" variant correctly, I left it as unsupported for now. | |
.. _`README.txt`: http://vis-www.cs.umass.edu/lfw/README.txt | |
The original images are 250 x 250 pixels, but the default slice and resize | |
arguments reduce them to 62 x 47. | |
Read more in the :ref:`User Guide <labeled_faces_in_the_wild_dataset>`. | |
Parameters | |
---------- | |
subset : {'train', 'test', '10_folds'}, default='train' | |
Select the dataset to load: 'train' for the development training | |
set, 'test' for the development test set, and '10_folds' for the | |
official evaluation set that is meant to be used with a 10-folds | |
cross validation. | |
data_home : str or path-like, default=None | |
Specify another download and cache folder for the datasets. By | |
default all scikit-learn data is stored in '~/scikit_learn_data' | |
subfolders. | |
funneled : bool, default=True | |
Download and use the funneled variant of the dataset. | |
resize : float, default=0.5 | |
Ratio used to resize the each face picture. | |
color : bool, default=False | |
Keep the 3 RGB channels instead of averaging them to a single | |
gray level channel. If color is True the shape of the data has | |
one more dimension than the shape with color = False. | |
slice_ : tuple of slice, default=(slice(70, 195), slice(78, 172)) | |
Provide a custom 2D slice (height, width) to extract the | |
'interesting' part of the jpeg files and avoid use statistical | |
correlation from the background. | |
download_if_missing : bool, default=True | |
If False, raise an OSError if the data is not locally available | |
instead of trying to download the data from the source site. | |
Returns | |
------- | |
data : :class:`~sklearn.utils.Bunch` | |
Dictionary-like object, with the following attributes. | |
data : ndarray of shape (2200, 5828). Shape depends on ``subset``. | |
Each row corresponds to 2 ravel'd face images | |
of original size 62 x 47 pixels. | |
Changing the ``slice_``, ``resize`` or ``subset`` parameters | |
will change the shape of the output. | |
pairs : ndarray of shape (2200, 2, 62, 47). Shape depends on ``subset`` | |
Each row has 2 face images corresponding | |
to same or different person from the dataset | |
containing 5749 people. Changing the ``slice_``, | |
``resize`` or ``subset`` parameters will change the shape of the | |
output. | |
target : numpy array of shape (2200,). Shape depends on ``subset``. | |
Labels associated to each pair of images. | |
The two label values being different persons or the same person. | |
target_names : numpy array of shape (2,) | |
Explains the target values of the target array. | |
0 corresponds to "Different person", 1 corresponds to "same person". | |
DESCR : str | |
Description of the Labeled Faces in the Wild (LFW) dataset. | |
""" | |
lfw_home, data_folder_path = _check_fetch_lfw( | |
data_home=data_home, funneled=funneled, download_if_missing=download_if_missing | |
) | |
logger.debug("Loading %s LFW pairs from %s", subset, lfw_home) | |
# wrap the loader in a memoizing function that will return memmaped data | |
# arrays for optimal memory usage | |
m = Memory(location=lfw_home, compress=6, verbose=0) | |
load_func = m.cache(_fetch_lfw_pairs) | |
# select the right metadata file according to the requested subset | |
label_filenames = { | |
"train": "pairsDevTrain.txt", | |
"test": "pairsDevTest.txt", | |
"10_folds": "pairs.txt", | |
} | |
if subset not in label_filenames: | |
raise ValueError( | |
"subset='%s' is invalid: should be one of %r" | |
% (subset, list(sorted(label_filenames.keys()))) | |
) | |
index_file_path = join(lfw_home, label_filenames[subset]) | |
# load and memoize the pairs as np arrays | |
pairs, target, target_names = load_func( | |
index_file_path, data_folder_path, resize=resize, color=color, slice_=slice_ | |
) | |
fdescr = load_descr("lfw.rst") | |
# pack the results as a Bunch instance | |
return Bunch( | |
data=pairs.reshape(len(pairs), -1), | |
pairs=pairs, | |
target=target, | |
target_names=target_names, | |
DESCR=fdescr, | |
) | |