peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/datasets
/_rcv1.py
"""RCV1 dataset. | |
The dataset page is available at | |
http://jmlr.csail.mit.edu/papers/volume5/lewis04a/ | |
""" | |
# Author: Tom Dupre la Tour | |
# License: BSD 3 clause | |
import logging | |
from gzip import GzipFile | |
from os import PathLike, makedirs, remove | |
from os.path import exists, join | |
import joblib | |
import numpy as np | |
import scipy.sparse as sp | |
from ..utils import Bunch | |
from ..utils import shuffle as shuffle_ | |
from ..utils._param_validation import StrOptions, validate_params | |
from . import get_data_home | |
from ._base import RemoteFileMetadata, _fetch_remote, _pkl_filepath, load_descr | |
from ._svmlight_format_io import load_svmlight_files | |
# The original vectorized data can be found at: | |
# http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a13-vector-files/lyrl2004_vectors_test_pt0.dat.gz | |
# http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a13-vector-files/lyrl2004_vectors_test_pt1.dat.gz | |
# http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a13-vector-files/lyrl2004_vectors_test_pt2.dat.gz | |
# http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a13-vector-files/lyrl2004_vectors_test_pt3.dat.gz | |
# http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a13-vector-files/lyrl2004_vectors_train.dat.gz | |
# while the original stemmed token files can be found | |
# in the README, section B.12.i.: | |
# http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm | |
XY_METADATA = ( | |
RemoteFileMetadata( | |
url="https://ndownloader.figshare.com/files/5976069", | |
checksum="ed40f7e418d10484091b059703eeb95ae3199fe042891dcec4be6696b9968374", | |
filename="lyrl2004_vectors_test_pt0.dat.gz", | |
), | |
RemoteFileMetadata( | |
url="https://ndownloader.figshare.com/files/5976066", | |
checksum="87700668ae45d45d5ca1ef6ae9bd81ab0f5ec88cc95dcef9ae7838f727a13aa6", | |
filename="lyrl2004_vectors_test_pt1.dat.gz", | |
), | |
RemoteFileMetadata( | |
url="https://ndownloader.figshare.com/files/5976063", | |
checksum="48143ac703cbe33299f7ae9f4995db49a258690f60e5debbff8995c34841c7f5", | |
filename="lyrl2004_vectors_test_pt2.dat.gz", | |
), | |
RemoteFileMetadata( | |
url="https://ndownloader.figshare.com/files/5976060", | |
checksum="dfcb0d658311481523c6e6ca0c3f5a3e1d3d12cde5d7a8ce629a9006ec7dbb39", | |
filename="lyrl2004_vectors_test_pt3.dat.gz", | |
), | |
RemoteFileMetadata( | |
url="https://ndownloader.figshare.com/files/5976057", | |
checksum="5468f656d0ba7a83afc7ad44841cf9a53048a5c083eedc005dcdb5cc768924ae", | |
filename="lyrl2004_vectors_train.dat.gz", | |
), | |
) | |
# The original data can be found at: | |
# http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a08-topic-qrels/rcv1-v2.topics.qrels.gz | |
TOPICS_METADATA = RemoteFileMetadata( | |
url="https://ndownloader.figshare.com/files/5976048", | |
checksum="2a98e5e5d8b770bded93afc8930d88299474317fe14181aee1466cc754d0d1c1", | |
filename="rcv1v2.topics.qrels.gz", | |
) | |
logger = logging.getLogger(__name__) | |
def fetch_rcv1( | |
*, | |
data_home=None, | |
subset="all", | |
download_if_missing=True, | |
random_state=None, | |
shuffle=False, | |
return_X_y=False, | |
): | |
"""Load the RCV1 multilabel dataset (classification). | |
Download it if necessary. | |
Version: RCV1-v2, vectors, full sets, topics multilabels. | |
================= ===================== | |
Classes 103 | |
Samples total 804414 | |
Dimensionality 47236 | |
Features real, between 0 and 1 | |
================= ===================== | |
Read more in the :ref:`User Guide <rcv1_dataset>`. | |
.. versionadded:: 0.17 | |
Parameters | |
---------- | |
data_home : str or path-like, default=None | |
Specify another download and cache folder for the datasets. By default | |
all scikit-learn data is stored in '~/scikit_learn_data' subfolders. | |
subset : {'train', 'test', 'all'}, default='all' | |
Select the dataset to load: 'train' for the training set | |
(23149 samples), 'test' for the test set (781265 samples), | |
'all' for both, with the training samples first if shuffle is False. | |
This follows the official LYRL2004 chronological split. | |
download_if_missing : bool, default=True | |
If False, raise an OSError if the data is not locally available | |
instead of trying to download the data from the source site. | |
random_state : int, RandomState instance or None, default=None | |
Determines random number generation for dataset shuffling. Pass an int | |
for reproducible output across multiple function calls. | |
See :term:`Glossary <random_state>`. | |
shuffle : bool, default=False | |
Whether to shuffle dataset. | |
return_X_y : bool, default=False | |
If True, returns ``(dataset.data, dataset.target)`` instead of a Bunch | |
object. See below for more information about the `dataset.data` and | |
`dataset.target` object. | |
.. versionadded:: 0.20 | |
Returns | |
------- | |
dataset : :class:`~sklearn.utils.Bunch` | |
Dictionary-like object. Returned only if `return_X_y` is False. | |
`dataset` has the following attributes: | |
- data : sparse matrix of shape (804414, 47236), dtype=np.float64 | |
The array has 0.16% of non zero values. Will be of CSR format. | |
- target : sparse matrix of shape (804414, 103), dtype=np.uint8 | |
Each sample has a value of 1 in its categories, and 0 in others. | |
The array has 3.15% of non zero values. Will be of CSR format. | |
- sample_id : ndarray of shape (804414,), dtype=np.uint32, | |
Identification number of each sample, as ordered in dataset.data. | |
- target_names : ndarray of shape (103,), dtype=object | |
Names of each target (RCV1 topics), as ordered in dataset.target. | |
- DESCR : str | |
Description of the RCV1 dataset. | |
(data, target) : tuple | |
A tuple consisting of `dataset.data` and `dataset.target`, as | |
described above. Returned only if `return_X_y` is True. | |
.. versionadded:: 0.20 | |
""" | |
N_SAMPLES = 804414 | |
N_FEATURES = 47236 | |
N_CATEGORIES = 103 | |
N_TRAIN = 23149 | |
data_home = get_data_home(data_home=data_home) | |
rcv1_dir = join(data_home, "RCV1") | |
if download_if_missing: | |
if not exists(rcv1_dir): | |
makedirs(rcv1_dir) | |
samples_path = _pkl_filepath(rcv1_dir, "samples.pkl") | |
sample_id_path = _pkl_filepath(rcv1_dir, "sample_id.pkl") | |
sample_topics_path = _pkl_filepath(rcv1_dir, "sample_topics.pkl") | |
topics_path = _pkl_filepath(rcv1_dir, "topics_names.pkl") | |
# load data (X) and sample_id | |
if download_if_missing and (not exists(samples_path) or not exists(sample_id_path)): | |
files = [] | |
for each in XY_METADATA: | |
logger.info("Downloading %s" % each.url) | |
file_path = _fetch_remote(each, dirname=rcv1_dir) | |
files.append(GzipFile(filename=file_path)) | |
Xy = load_svmlight_files(files, n_features=N_FEATURES) | |
# Training data is before testing data | |
X = sp.vstack([Xy[8], Xy[0], Xy[2], Xy[4], Xy[6]]).tocsr() | |
sample_id = np.hstack((Xy[9], Xy[1], Xy[3], Xy[5], Xy[7])) | |
sample_id = sample_id.astype(np.uint32, copy=False) | |
joblib.dump(X, samples_path, compress=9) | |
joblib.dump(sample_id, sample_id_path, compress=9) | |
# delete archives | |
for f in files: | |
f.close() | |
remove(f.name) | |
else: | |
X = joblib.load(samples_path) | |
sample_id = joblib.load(sample_id_path) | |
# load target (y), categories, and sample_id_bis | |
if download_if_missing and ( | |
not exists(sample_topics_path) or not exists(topics_path) | |
): | |
logger.info("Downloading %s" % TOPICS_METADATA.url) | |
topics_archive_path = _fetch_remote(TOPICS_METADATA, dirname=rcv1_dir) | |
# parse the target file | |
n_cat = -1 | |
n_doc = -1 | |
doc_previous = -1 | |
y = np.zeros((N_SAMPLES, N_CATEGORIES), dtype=np.uint8) | |
sample_id_bis = np.zeros(N_SAMPLES, dtype=np.int32) | |
category_names = {} | |
with GzipFile(filename=topics_archive_path, mode="rb") as f: | |
for line in f: | |
line_components = line.decode("ascii").split(" ") | |
if len(line_components) == 3: | |
cat, doc, _ = line_components | |
if cat not in category_names: | |
n_cat += 1 | |
category_names[cat] = n_cat | |
doc = int(doc) | |
if doc != doc_previous: | |
doc_previous = doc | |
n_doc += 1 | |
sample_id_bis[n_doc] = doc | |
y[n_doc, category_names[cat]] = 1 | |
# delete archive | |
remove(topics_archive_path) | |
# Samples in X are ordered with sample_id, | |
# whereas in y, they are ordered with sample_id_bis. | |
permutation = _find_permutation(sample_id_bis, sample_id) | |
y = y[permutation, :] | |
# save category names in a list, with same order than y | |
categories = np.empty(N_CATEGORIES, dtype=object) | |
for k in category_names.keys(): | |
categories[category_names[k]] = k | |
# reorder categories in lexicographic order | |
order = np.argsort(categories) | |
categories = categories[order] | |
y = sp.csr_matrix(y[:, order]) | |
joblib.dump(y, sample_topics_path, compress=9) | |
joblib.dump(categories, topics_path, compress=9) | |
else: | |
y = joblib.load(sample_topics_path) | |
categories = joblib.load(topics_path) | |
if subset == "all": | |
pass | |
elif subset == "train": | |
X = X[:N_TRAIN, :] | |
y = y[:N_TRAIN, :] | |
sample_id = sample_id[:N_TRAIN] | |
elif subset == "test": | |
X = X[N_TRAIN:, :] | |
y = y[N_TRAIN:, :] | |
sample_id = sample_id[N_TRAIN:] | |
else: | |
raise ValueError( | |
"Unknown subset parameter. Got '%s' instead of one" | |
" of ('all', 'train', test')" % subset | |
) | |
if shuffle: | |
X, y, sample_id = shuffle_(X, y, sample_id, random_state=random_state) | |
fdescr = load_descr("rcv1.rst") | |
if return_X_y: | |
return X, y | |
return Bunch( | |
data=X, target=y, sample_id=sample_id, target_names=categories, DESCR=fdescr | |
) | |
def _inverse_permutation(p): | |
"""Inverse permutation p.""" | |
n = p.size | |
s = np.zeros(n, dtype=np.int32) | |
i = np.arange(n, dtype=np.int32) | |
np.put(s, p, i) # s[p] = i | |
return s | |
def _find_permutation(a, b): | |
"""Find the permutation from a to b.""" | |
t = np.argsort(a) | |
u = np.argsort(b) | |
u_ = _inverse_permutation(u) | |
return t[u_] | |