peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/preprocessing
/_discretization.py
# Author: Henry Lin <[email protected]> | |
# Tom Dupré la Tour | |
# License: BSD | |
import warnings | |
from numbers import Integral | |
import numpy as np | |
from ..base import BaseEstimator, TransformerMixin, _fit_context | |
from ..utils import _safe_indexing | |
from ..utils._param_validation import Hidden, Interval, Options, StrOptions | |
from ..utils.stats import _weighted_percentile | |
from ..utils.validation import ( | |
_check_feature_names_in, | |
_check_sample_weight, | |
check_array, | |
check_is_fitted, | |
check_random_state, | |
) | |
from ._encoders import OneHotEncoder | |
class KBinsDiscretizer(TransformerMixin, BaseEstimator): | |
""" | |
Bin continuous data into intervals. | |
Read more in the :ref:`User Guide <preprocessing_discretization>`. | |
.. versionadded:: 0.20 | |
Parameters | |
---------- | |
n_bins : int or array-like of shape (n_features,), default=5 | |
The number of bins to produce. Raises ValueError if ``n_bins < 2``. | |
encode : {'onehot', 'onehot-dense', 'ordinal'}, default='onehot' | |
Method used to encode the transformed result. | |
- 'onehot': Encode the transformed result with one-hot encoding | |
and return a sparse matrix. Ignored features are always | |
stacked to the right. | |
- 'onehot-dense': Encode the transformed result with one-hot encoding | |
and return a dense array. Ignored features are always | |
stacked to the right. | |
- 'ordinal': Return the bin identifier encoded as an integer value. | |
strategy : {'uniform', 'quantile', 'kmeans'}, default='quantile' | |
Strategy used to define the widths of the bins. | |
- 'uniform': All bins in each feature have identical widths. | |
- 'quantile': All bins in each feature have the same number of points. | |
- 'kmeans': Values in each bin have the same nearest center of a 1D | |
k-means cluster. | |
For an example of the different strategies see: | |
:ref:`sphx_glr_auto_examples_preprocessing_plot_discretization_strategies.py`. | |
dtype : {np.float32, np.float64}, default=None | |
The desired data-type for the output. If None, output dtype is | |
consistent with input dtype. Only np.float32 and np.float64 are | |
supported. | |
.. versionadded:: 0.24 | |
subsample : int or None, default='warn' | |
Maximum number of samples, used to fit the model, for computational | |
efficiency. Defaults to 200_000 when `strategy='quantile'` and to `None` | |
when `strategy='uniform'` or `strategy='kmeans'`. | |
`subsample=None` means that all the training samples are used when | |
computing the quantiles that determine the binning thresholds. | |
Since quantile computation relies on sorting each column of `X` and | |
that sorting has an `n log(n)` time complexity, | |
it is recommended to use subsampling on datasets with a | |
very large number of samples. | |
.. versionchanged:: 1.3 | |
The default value of `subsample` changed from `None` to `200_000` when | |
`strategy="quantile"`. | |
.. versionchanged:: 1.5 | |
The default value of `subsample` changed from `None` to `200_000` when | |
`strategy="uniform"` or `strategy="kmeans"`. | |
random_state : int, RandomState instance or None, default=None | |
Determines random number generation for subsampling. | |
Pass an int for reproducible results across multiple function calls. | |
See the `subsample` parameter for more details. | |
See :term:`Glossary <random_state>`. | |
.. versionadded:: 1.1 | |
Attributes | |
---------- | |
bin_edges_ : ndarray of ndarray of shape (n_features,) | |
The edges of each bin. Contain arrays of varying shapes ``(n_bins_, )`` | |
Ignored features will have empty arrays. | |
n_bins_ : ndarray of shape (n_features,), dtype=np.int64 | |
Number of bins per feature. Bins whose width are too small | |
(i.e., <= 1e-8) are removed with a warning. | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Defined only when `X` | |
has feature names that are all strings. | |
.. versionadded:: 1.0 | |
See Also | |
-------- | |
Binarizer : Class used to bin values as ``0`` or | |
``1`` based on a parameter ``threshold``. | |
Notes | |
----- | |
For a visualization of discretization on different datasets refer to | |
:ref:`sphx_glr_auto_examples_preprocessing_plot_discretization_classification.py`. | |
On the effect of discretization on linear models see: | |
:ref:`sphx_glr_auto_examples_preprocessing_plot_discretization.py`. | |
In bin edges for feature ``i``, the first and last values are used only for | |
``inverse_transform``. During transform, bin edges are extended to:: | |
np.concatenate([-np.inf, bin_edges_[i][1:-1], np.inf]) | |
You can combine ``KBinsDiscretizer`` with | |
:class:`~sklearn.compose.ColumnTransformer` if you only want to preprocess | |
part of the features. | |
``KBinsDiscretizer`` might produce constant features (e.g., when | |
``encode = 'onehot'`` and certain bins do not contain any data). | |
These features can be removed with feature selection algorithms | |
(e.g., :class:`~sklearn.feature_selection.VarianceThreshold`). | |
Examples | |
-------- | |
>>> from sklearn.preprocessing import KBinsDiscretizer | |
>>> X = [[-2, 1, -4, -1], | |
... [-1, 2, -3, -0.5], | |
... [ 0, 3, -2, 0.5], | |
... [ 1, 4, -1, 2]] | |
>>> est = KBinsDiscretizer( | |
... n_bins=3, encode='ordinal', strategy='uniform', subsample=None | |
... ) | |
>>> est.fit(X) | |
KBinsDiscretizer(...) | |
>>> Xt = est.transform(X) | |
>>> Xt # doctest: +SKIP | |
array([[ 0., 0., 0., 0.], | |
[ 1., 1., 1., 0.], | |
[ 2., 2., 2., 1.], | |
[ 2., 2., 2., 2.]]) | |
Sometimes it may be useful to convert the data back into the original | |
feature space. The ``inverse_transform`` function converts the binned | |
data into the original feature space. Each value will be equal to the mean | |
of the two bin edges. | |
>>> est.bin_edges_[0] | |
array([-2., -1., 0., 1.]) | |
>>> est.inverse_transform(Xt) | |
array([[-1.5, 1.5, -3.5, -0.5], | |
[-0.5, 2.5, -2.5, -0.5], | |
[ 0.5, 3.5, -1.5, 0.5], | |
[ 0.5, 3.5, -1.5, 1.5]]) | |
""" | |
_parameter_constraints: dict = { | |
"n_bins": [Interval(Integral, 2, None, closed="left"), "array-like"], | |
"encode": [StrOptions({"onehot", "onehot-dense", "ordinal"})], | |
"strategy": [StrOptions({"uniform", "quantile", "kmeans"})], | |
"dtype": [Options(type, {np.float64, np.float32}), None], | |
"subsample": [ | |
Interval(Integral, 1, None, closed="left"), | |
None, | |
Hidden(StrOptions({"warn"})), | |
], | |
"random_state": ["random_state"], | |
} | |
def __init__( | |
self, | |
n_bins=5, | |
*, | |
encode="onehot", | |
strategy="quantile", | |
dtype=None, | |
subsample="warn", | |
random_state=None, | |
): | |
self.n_bins = n_bins | |
self.encode = encode | |
self.strategy = strategy | |
self.dtype = dtype | |
self.subsample = subsample | |
self.random_state = random_state | |
def fit(self, X, y=None, sample_weight=None): | |
""" | |
Fit the estimator. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
Data to be discretized. | |
y : None | |
Ignored. This parameter exists only for compatibility with | |
:class:`~sklearn.pipeline.Pipeline`. | |
sample_weight : ndarray of shape (n_samples,) | |
Contains weight values to be associated with each sample. | |
Only possible when `strategy` is set to `"quantile"`. | |
.. versionadded:: 1.3 | |
Returns | |
------- | |
self : object | |
Returns the instance itself. | |
""" | |
X = self._validate_data(X, dtype="numeric") | |
if self.dtype in (np.float64, np.float32): | |
output_dtype = self.dtype | |
else: # self.dtype is None | |
output_dtype = X.dtype | |
n_samples, n_features = X.shape | |
if sample_weight is not None and self.strategy == "uniform": | |
raise ValueError( | |
"`sample_weight` was provided but it cannot be " | |
"used with strategy='uniform'. Got strategy=" | |
f"{self.strategy!r} instead." | |
) | |
if self.strategy in ("uniform", "kmeans") and self.subsample == "warn": | |
warnings.warn( | |
( | |
"In version 1.5 onwards, subsample=200_000 " | |
"will be used by default. Set subsample explicitly to " | |
"silence this warning in the mean time. Set " | |
"subsample=None to disable subsampling explicitly." | |
), | |
FutureWarning, | |
) | |
subsample = self.subsample | |
if subsample == "warn": | |
subsample = 200000 if self.strategy == "quantile" else None | |
if subsample is not None and n_samples > subsample: | |
rng = check_random_state(self.random_state) | |
subsample_idx = rng.choice(n_samples, size=subsample, replace=False) | |
X = _safe_indexing(X, subsample_idx) | |
n_features = X.shape[1] | |
n_bins = self._validate_n_bins(n_features) | |
if sample_weight is not None: | |
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype) | |
bin_edges = np.zeros(n_features, dtype=object) | |
for jj in range(n_features): | |
column = X[:, jj] | |
col_min, col_max = column.min(), column.max() | |
if col_min == col_max: | |
warnings.warn( | |
"Feature %d is constant and will be replaced with 0." % jj | |
) | |
n_bins[jj] = 1 | |
bin_edges[jj] = np.array([-np.inf, np.inf]) | |
continue | |
if self.strategy == "uniform": | |
bin_edges[jj] = np.linspace(col_min, col_max, n_bins[jj] + 1) | |
elif self.strategy == "quantile": | |
quantiles = np.linspace(0, 100, n_bins[jj] + 1) | |
if sample_weight is None: | |
bin_edges[jj] = np.asarray(np.percentile(column, quantiles)) | |
else: | |
bin_edges[jj] = np.asarray( | |
[ | |
_weighted_percentile(column, sample_weight, q) | |
for q in quantiles | |
], | |
dtype=np.float64, | |
) | |
elif self.strategy == "kmeans": | |
from ..cluster import KMeans # fixes import loops | |
# Deterministic initialization with uniform spacing | |
uniform_edges = np.linspace(col_min, col_max, n_bins[jj] + 1) | |
init = (uniform_edges[1:] + uniform_edges[:-1])[:, None] * 0.5 | |
# 1D k-means procedure | |
km = KMeans(n_clusters=n_bins[jj], init=init, n_init=1) | |
centers = km.fit( | |
column[:, None], sample_weight=sample_weight | |
).cluster_centers_[:, 0] | |
# Must sort, centers may be unsorted even with sorted init | |
centers.sort() | |
bin_edges[jj] = (centers[1:] + centers[:-1]) * 0.5 | |
bin_edges[jj] = np.r_[col_min, bin_edges[jj], col_max] | |
# Remove bins whose width are too small (i.e., <= 1e-8) | |
if self.strategy in ("quantile", "kmeans"): | |
mask = np.ediff1d(bin_edges[jj], to_begin=np.inf) > 1e-8 | |
bin_edges[jj] = bin_edges[jj][mask] | |
if len(bin_edges[jj]) - 1 != n_bins[jj]: | |
warnings.warn( | |
"Bins whose width are too small (i.e., <= " | |
"1e-8) in feature %d are removed. Consider " | |
"decreasing the number of bins." % jj | |
) | |
n_bins[jj] = len(bin_edges[jj]) - 1 | |
self.bin_edges_ = bin_edges | |
self.n_bins_ = n_bins | |
if "onehot" in self.encode: | |
self._encoder = OneHotEncoder( | |
categories=[np.arange(i) for i in self.n_bins_], | |
sparse_output=self.encode == "onehot", | |
dtype=output_dtype, | |
) | |
# Fit the OneHotEncoder with toy datasets | |
# so that it's ready for use after the KBinsDiscretizer is fitted | |
self._encoder.fit(np.zeros((1, len(self.n_bins_)))) | |
return self | |
def _validate_n_bins(self, n_features): | |
"""Returns n_bins_, the number of bins per feature.""" | |
orig_bins = self.n_bins | |
if isinstance(orig_bins, Integral): | |
return np.full(n_features, orig_bins, dtype=int) | |
n_bins = check_array(orig_bins, dtype=int, copy=True, ensure_2d=False) | |
if n_bins.ndim > 1 or n_bins.shape[0] != n_features: | |
raise ValueError("n_bins must be a scalar or array of shape (n_features,).") | |
bad_nbins_value = (n_bins < 2) | (n_bins != orig_bins) | |
violating_indices = np.where(bad_nbins_value)[0] | |
if violating_indices.shape[0] > 0: | |
indices = ", ".join(str(i) for i in violating_indices) | |
raise ValueError( | |
"{} received an invalid number " | |
"of bins at indices {}. Number of bins " | |
"must be at least 2, and must be an int.".format( | |
KBinsDiscretizer.__name__, indices | |
) | |
) | |
return n_bins | |
def transform(self, X): | |
""" | |
Discretize the data. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
Data to be discretized. | |
Returns | |
------- | |
Xt : {ndarray, sparse matrix}, dtype={np.float32, np.float64} | |
Data in the binned space. Will be a sparse matrix if | |
`self.encode='onehot'` and ndarray otherwise. | |
""" | |
check_is_fitted(self) | |
# check input and attribute dtypes | |
dtype = (np.float64, np.float32) if self.dtype is None else self.dtype | |
Xt = self._validate_data(X, copy=True, dtype=dtype, reset=False) | |
bin_edges = self.bin_edges_ | |
for jj in range(Xt.shape[1]): | |
Xt[:, jj] = np.searchsorted(bin_edges[jj][1:-1], Xt[:, jj], side="right") | |
if self.encode == "ordinal": | |
return Xt | |
dtype_init = None | |
if "onehot" in self.encode: | |
dtype_init = self._encoder.dtype | |
self._encoder.dtype = Xt.dtype | |
try: | |
Xt_enc = self._encoder.transform(Xt) | |
finally: | |
# revert the initial dtype to avoid modifying self. | |
self._encoder.dtype = dtype_init | |
return Xt_enc | |
def inverse_transform(self, Xt): | |
""" | |
Transform discretized data back to original feature space. | |
Note that this function does not regenerate the original data | |
due to discretization rounding. | |
Parameters | |
---------- | |
Xt : array-like of shape (n_samples, n_features) | |
Transformed data in the binned space. | |
Returns | |
------- | |
Xinv : ndarray, dtype={np.float32, np.float64} | |
Data in the original feature space. | |
""" | |
check_is_fitted(self) | |
if "onehot" in self.encode: | |
Xt = self._encoder.inverse_transform(Xt) | |
Xinv = check_array(Xt, copy=True, dtype=(np.float64, np.float32)) | |
n_features = self.n_bins_.shape[0] | |
if Xinv.shape[1] != n_features: | |
raise ValueError( | |
"Incorrect number of features. Expecting {}, received {}.".format( | |
n_features, Xinv.shape[1] | |
) | |
) | |
for jj in range(n_features): | |
bin_edges = self.bin_edges_[jj] | |
bin_centers = (bin_edges[1:] + bin_edges[:-1]) * 0.5 | |
Xinv[:, jj] = bin_centers[(Xinv[:, jj]).astype(np.int64)] | |
return Xinv | |
def get_feature_names_out(self, input_features=None): | |
"""Get output feature names. | |
Parameters | |
---------- | |
input_features : array-like of str or None, default=None | |
Input features. | |
- If `input_features` is `None`, then `feature_names_in_` is | |
used as feature names in. If `feature_names_in_` is not defined, | |
then the following input feature names are generated: | |
`["x0", "x1", ..., "x(n_features_in_ - 1)"]`. | |
- If `input_features` is an array-like, then `input_features` must | |
match `feature_names_in_` if `feature_names_in_` is defined. | |
Returns | |
------- | |
feature_names_out : ndarray of str objects | |
Transformed feature names. | |
""" | |
check_is_fitted(self, "n_features_in_") | |
input_features = _check_feature_names_in(self, input_features) | |
if hasattr(self, "_encoder"): | |
return self._encoder.get_feature_names_out(input_features) | |
# ordinal encoding | |
return input_features | |