peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/tree
/_criterion.pxd
# Authors: Gilles Louppe <g.louppe@gmail.com> | |
# Peter Prettenhofer <peter.prettenhofer@gmail.com> | |
# Brian Holt <bdholt1@gmail.com> | |
# Joel Nothman <joel.nothman@gmail.com> | |
# Arnaud Joly <arnaud.v.joly@gmail.com> | |
# Jacob Schreiber <jmschreiber91@gmail.com> | |
# | |
# License: BSD 3 clause | |
# See _criterion.pyx for implementation details. | |
cimport numpy as cnp | |
from ..utils._typedefs cimport float64_t, intp_t | |
cdef class Criterion: | |
# The criterion computes the impurity of a node and the reduction of | |
# impurity of a split on that node. It also computes the output statistics | |
# such as the mean in regression and class probabilities in classification. | |
# Internal structures | |
cdef const float64_t[:, ::1] y # Values of y | |
cdef const float64_t[:] sample_weight # Sample weights | |
cdef const intp_t[:] sample_indices # Sample indices in X, y | |
cdef intp_t start # samples[start:pos] are the samples in the left node | |
cdef intp_t pos # samples[pos:end] are the samples in the right node | |
cdef intp_t end | |
cdef intp_t n_missing # Number of missing values for the feature being evaluated | |
cdef bint missing_go_to_left # Whether missing values go to the left node | |
cdef intp_t n_outputs # Number of outputs | |
cdef intp_t n_samples # Number of samples | |
cdef intp_t n_node_samples # Number of samples in the node (end-start) | |
cdef float64_t weighted_n_samples # Weighted number of samples (in total) | |
cdef float64_t weighted_n_node_samples # Weighted number of samples in the node | |
cdef float64_t weighted_n_left # Weighted number of samples in the left node | |
cdef float64_t weighted_n_right # Weighted number of samples in the right node | |
cdef float64_t weighted_n_missing # Weighted number of samples that are missing | |
# The criterion object is maintained such that left and right collected | |
# statistics correspond to samples[start:pos] and samples[pos:end]. | |
# Methods | |
cdef int init( | |
self, | |
const float64_t[:, ::1] y, | |
const float64_t[:] sample_weight, | |
float64_t weighted_n_samples, | |
const intp_t[:] sample_indices, | |
intp_t start, | |
intp_t end | |
) except -1 nogil | |
cdef void init_sum_missing(self) | |
cdef void init_missing(self, intp_t n_missing) noexcept nogil | |
cdef int reset(self) except -1 nogil | |
cdef int reverse_reset(self) except -1 nogil | |
cdef int update(self, intp_t new_pos) except -1 nogil | |
cdef float64_t node_impurity(self) noexcept nogil | |
cdef void children_impurity( | |
self, | |
float64_t* impurity_left, | |
float64_t* impurity_right | |
) noexcept nogil | |
cdef void node_value( | |
self, | |
float64_t* dest | |
) noexcept nogil | |
cdef void clip_node_value( | |
self, | |
float64_t* dest, | |
float64_t lower_bound, | |
float64_t upper_bound | |
) noexcept nogil | |
cdef float64_t middle_value(self) noexcept nogil | |
cdef float64_t impurity_improvement( | |
self, | |
float64_t impurity_parent, | |
float64_t impurity_left, | |
float64_t impurity_right | |
) noexcept nogil | |
cdef float64_t proxy_impurity_improvement(self) noexcept nogil | |
cdef bint check_monotonicity( | |
self, | |
cnp.int8_t monotonic_cst, | |
float64_t lower_bound, | |
float64_t upper_bound, | |
) noexcept nogil | |
cdef inline bint _check_monotonicity( | |
self, | |
cnp.int8_t monotonic_cst, | |
float64_t lower_bound, | |
float64_t upper_bound, | |
float64_t sum_left, | |
float64_t sum_right, | |
) noexcept nogil | |
cdef class ClassificationCriterion(Criterion): | |
"""Abstract criterion for classification.""" | |
cdef intp_t[::1] n_classes | |
cdef intp_t max_n_classes | |
cdef float64_t[:, ::1] sum_total # The sum of the weighted count of each label. | |
cdef float64_t[:, ::1] sum_left # Same as above, but for the left side of the split | |
cdef float64_t[:, ::1] sum_right # Same as above, but for the right side of the split | |
cdef float64_t[:, ::1] sum_missing # Same as above, but for missing values in X | |
cdef class RegressionCriterion(Criterion): | |
"""Abstract regression criterion.""" | |
cdef float64_t sq_sum_total | |
cdef float64_t[::1] sum_total # The sum of w*y. | |
cdef float64_t[::1] sum_left # Same as above, but for the left side of the split | |
cdef float64_t[::1] sum_right # Same as above, but for the right side of the split | |
cdef float64_t[::1] sum_missing # Same as above, but for missing values in X | |