peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/tree
/_tree.pxd
# Authors: Gilles Louppe <g.louppe@gmail.com> | |
# Peter Prettenhofer <peter.prettenhofer@gmail.com> | |
# Brian Holt <bdholt1@gmail.com> | |
# Joel Nothman <joel.nothman@gmail.com> | |
# Arnaud Joly <arnaud.v.joly@gmail.com> | |
# Jacob Schreiber <jmschreiber91@gmail.com> | |
# Nelson Liu <nelson@nelsonliu.me> | |
# | |
# License: BSD 3 clause | |
# See _tree.pyx for details. | |
import numpy as np | |
cimport numpy as cnp | |
from ..utils._typedefs cimport float32_t, float64_t, intp_t, int32_t, uint32_t | |
from ._splitter cimport Splitter | |
from ._splitter cimport SplitRecord | |
cdef struct Node: | |
# Base storage structure for the nodes in a Tree object | |
intp_t left_child # id of the left child of the node | |
intp_t right_child # id of the right child of the node | |
intp_t feature # Feature used for splitting the node | |
float64_t threshold # Threshold value at the node | |
float64_t impurity # Impurity of the node (i.e., the value of the criterion) | |
intp_t n_node_samples # Number of samples at the node | |
float64_t weighted_n_node_samples # Weighted number of samples at the node | |
unsigned char missing_go_to_left # Whether features have missing values | |
cdef class Tree: | |
# The Tree object is a binary tree structure constructed by the | |
# TreeBuilder. The tree structure is used for predictions and | |
# feature importances. | |
# Input/Output layout | |
cdef public intp_t n_features # Number of features in X | |
cdef intp_t* n_classes # Number of classes in y[:, k] | |
cdef public intp_t n_outputs # Number of outputs in y | |
cdef public intp_t max_n_classes # max(n_classes) | |
# Inner structures: values are stored separately from node structure, | |
# since size is determined at runtime. | |
cdef public intp_t max_depth # Max depth of the tree | |
cdef public intp_t node_count # Counter for node IDs | |
cdef public intp_t capacity # Capacity of tree, in terms of nodes | |
cdef Node* nodes # Array of nodes | |
cdef float64_t* value # (capacity, n_outputs, max_n_classes) array of values | |
cdef intp_t value_stride # = n_outputs * max_n_classes | |
# Methods | |
cdef intp_t _add_node(self, intp_t parent, bint is_left, bint is_leaf, | |
intp_t feature, float64_t threshold, float64_t impurity, | |
intp_t n_node_samples, | |
float64_t weighted_n_node_samples, | |
unsigned char missing_go_to_left) except -1 nogil | |
cdef int _resize(self, intp_t capacity) except -1 nogil | |
cdef int _resize_c(self, intp_t capacity=*) except -1 nogil | |
cdef cnp.ndarray _get_value_ndarray(self) | |
cdef cnp.ndarray _get_node_ndarray(self) | |
cpdef cnp.ndarray predict(self, object X) | |
cpdef cnp.ndarray apply(self, object X) | |
cdef cnp.ndarray _apply_dense(self, object X) | |
cdef cnp.ndarray _apply_sparse_csr(self, object X) | |
cpdef object decision_path(self, object X) | |
cdef object _decision_path_dense(self, object X) | |
cdef object _decision_path_sparse_csr(self, object X) | |
cpdef compute_node_depths(self) | |
cpdef compute_feature_importances(self, normalize=*) | |
# ============================================================================= | |
# Tree builder | |
# ============================================================================= | |
cdef class TreeBuilder: | |
# The TreeBuilder recursively builds a Tree object from training samples, | |
# using a Splitter object for splitting internal nodes and assigning | |
# values to leaves. | |
# | |
# This class controls the various stopping criteria and the node splitting | |
# evaluation order, e.g. depth-first or best-first. | |
cdef Splitter splitter # Splitting algorithm | |
cdef intp_t min_samples_split # Minimum number of samples in an internal node | |
cdef intp_t min_samples_leaf # Minimum number of samples in a leaf | |
cdef float64_t min_weight_leaf # Minimum weight in a leaf | |
cdef intp_t max_depth # Maximal tree depth | |
cdef float64_t min_impurity_decrease # Impurity threshold for early stopping | |
cpdef build( | |
self, | |
Tree tree, | |
object X, | |
const float64_t[:, ::1] y, | |
const float64_t[:] sample_weight=*, | |
const unsigned char[::1] missing_values_in_feature_mask=*, | |
) | |
cdef _check_input( | |
self, | |
object X, | |
const float64_t[:, ::1] y, | |
const float64_t[:] sample_weight, | |
) | |