peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pydantic
/config.py
"""Configuration for Pydantic models.""" | |
from __future__ import annotations as _annotations | |
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Type, TypeVar, Union | |
from typing_extensions import Literal, TypeAlias, TypedDict | |
from ._migration import getattr_migration | |
from .aliases import AliasGenerator | |
if TYPE_CHECKING: | |
from ._internal._generate_schema import GenerateSchema as _GenerateSchema | |
__all__ = ('ConfigDict', 'with_config') | |
JsonValue: TypeAlias = Union[int, float, str, bool, None, List['JsonValue'], 'JsonDict'] | |
JsonDict: TypeAlias = Dict[str, JsonValue] | |
JsonEncoder = Callable[[Any], Any] | |
JsonSchemaExtraCallable: TypeAlias = Union[ | |
Callable[[JsonDict], None], | |
Callable[[JsonDict, Type[Any]], None], | |
] | |
ExtraValues = Literal['allow', 'ignore', 'forbid'] | |
class ConfigDict(TypedDict, total=False): | |
"""A TypedDict for configuring Pydantic behaviour.""" | |
title: str | None | |
"""The title for the generated JSON schema, defaults to the model's name""" | |
str_to_lower: bool | |
"""Whether to convert all characters to lowercase for str types. Defaults to `False`.""" | |
str_to_upper: bool | |
"""Whether to convert all characters to uppercase for str types. Defaults to `False`.""" | |
str_strip_whitespace: bool | |
"""Whether to strip leading and trailing whitespace for str types.""" | |
str_min_length: int | |
"""The minimum length for str types. Defaults to `None`.""" | |
str_max_length: int | None | |
"""The maximum length for str types. Defaults to `None`.""" | |
extra: ExtraValues | None | |
""" | |
Whether to ignore, allow, or forbid extra attributes during model initialization. Defaults to `'ignore'`. | |
You can configure how pydantic handles the attributes that are not defined in the model: | |
* `allow` - Allow any extra attributes. | |
* `forbid` - Forbid any extra attributes. | |
* `ignore` - Ignore any extra attributes. | |
```py | |
from pydantic import BaseModel, ConfigDict | |
class User(BaseModel): | |
model_config = ConfigDict(extra='ignore') # (1)! | |
name: str | |
user = User(name='John Doe', age=20) # (2)! | |
print(user) | |
#> name='John Doe' | |
``` | |
1. This is the default behaviour. | |
2. The `age` argument is ignored. | |
Instead, with `extra='allow'`, the `age` argument is included: | |
```py | |
from pydantic import BaseModel, ConfigDict | |
class User(BaseModel): | |
model_config = ConfigDict(extra='allow') | |
name: str | |
user = User(name='John Doe', age=20) # (1)! | |
print(user) | |
#> name='John Doe' age=20 | |
``` | |
1. The `age` argument is included. | |
With `extra='forbid'`, an error is raised: | |
```py | |
from pydantic import BaseModel, ConfigDict, ValidationError | |
class User(BaseModel): | |
model_config = ConfigDict(extra='forbid') | |
name: str | |
try: | |
User(name='John Doe', age=20) | |
except ValidationError as e: | |
print(e) | |
''' | |
1 validation error for User | |
age | |
Extra inputs are not permitted [type=extra_forbidden, input_value=20, input_type=int] | |
''' | |
``` | |
""" | |
frozen: bool | |
""" | |
Whether models are faux-immutable, i.e. whether `__setattr__` is allowed, and also generates | |
a `__hash__()` method for the model. This makes instances of the model potentially hashable if all the | |
attributes are hashable. Defaults to `False`. | |
Note: | |
On V1, the inverse of this setting was called `allow_mutation`, and was `True` by default. | |
""" | |
populate_by_name: bool | |
""" | |
Whether an aliased field may be populated by its name as given by the model | |
attribute, as well as the alias. Defaults to `False`. | |
Note: | |
The name of this configuration setting was changed in **v2.0** from | |
`allow_population_by_field_name` to `populate_by_name`. | |
```py | |
from pydantic import BaseModel, ConfigDict, Field | |
class User(BaseModel): | |
model_config = ConfigDict(populate_by_name=True) | |
name: str = Field(alias='full_name') # (1)! | |
age: int | |
user = User(full_name='John Doe', age=20) # (2)! | |
print(user) | |
#> name='John Doe' age=20 | |
user = User(name='John Doe', age=20) # (3)! | |
print(user) | |
#> name='John Doe' age=20 | |
``` | |
1. The field `'name'` has an alias `'full_name'`. | |
2. The model is populated by the alias `'full_name'`. | |
3. The model is populated by the field name `'name'`. | |
""" | |
use_enum_values: bool | |
""" | |
Whether to populate models with the `value` property of enums, rather than the raw enum. | |
This may be useful if you want to serialize `model.model_dump()` later. Defaults to `False`. | |
!!! note | |
If you have an `Optional[Enum]` value that you set a default for, you need to use `validate_default=True` | |
for said Field to ensure that the `use_enum_values` flag takes effect on the default, as extracting an | |
enum's value occurs during validation, not serialization. | |
```py | |
from enum import Enum | |
from typing import Optional | |
from pydantic import BaseModel, ConfigDict, Field | |
class SomeEnum(Enum): | |
FOO = 'foo' | |
BAR = 'bar' | |
BAZ = 'baz' | |
class SomeModel(BaseModel): | |
model_config = ConfigDict(use_enum_values=True) | |
some_enum: SomeEnum | |
another_enum: Optional[SomeEnum] = Field(default=SomeEnum.FOO, validate_default=True) | |
model1 = SomeModel(some_enum=SomeEnum.BAR) | |
print(model1.model_dump()) | |
# {'some_enum': 'bar', 'another_enum': 'foo'} | |
model2 = SomeModel(some_enum=SomeEnum.BAR, another_enum=SomeEnum.BAZ) | |
print(model2.model_dump()) | |
#> {'some_enum': 'bar', 'another_enum': 'baz'} | |
``` | |
""" | |
validate_assignment: bool | |
""" | |
Whether to validate the data when the model is changed. Defaults to `False`. | |
The default behavior of Pydantic is to validate the data when the model is created. | |
In case the user changes the data after the model is created, the model is _not_ revalidated. | |
```py | |
from pydantic import BaseModel | |
class User(BaseModel): | |
name: str | |
user = User(name='John Doe') # (1)! | |
print(user) | |
#> name='John Doe' | |
user.name = 123 # (1)! | |
print(user) | |
#> name=123 | |
``` | |
1. The validation happens only when the model is created. | |
2. The validation does not happen when the data is changed. | |
In case you want to revalidate the model when the data is changed, you can use `validate_assignment=True`: | |
```py | |
from pydantic import BaseModel, ValidationError | |
class User(BaseModel, validate_assignment=True): # (1)! | |
name: str | |
user = User(name='John Doe') # (2)! | |
print(user) | |
#> name='John Doe' | |
try: | |
user.name = 123 # (3)! | |
except ValidationError as e: | |
print(e) | |
''' | |
1 validation error for User | |
name | |
Input should be a valid string [type=string_type, input_value=123, input_type=int] | |
''' | |
``` | |
1. You can either use class keyword arguments, or `model_config` to set `validate_assignment=True`. | |
2. The validation happens when the model is created. | |
3. The validation _also_ happens when the data is changed. | |
""" | |
arbitrary_types_allowed: bool | |
""" | |
Whether arbitrary types are allowed for field types. Defaults to `False`. | |
```py | |
from pydantic import BaseModel, ConfigDict, ValidationError | |
# This is not a pydantic model, it's an arbitrary class | |
class Pet: | |
def __init__(self, name: str): | |
self.name = name | |
class Model(BaseModel): | |
model_config = ConfigDict(arbitrary_types_allowed=True) | |
pet: Pet | |
owner: str | |
pet = Pet(name='Hedwig') | |
# A simple check of instance type is used to validate the data | |
model = Model(owner='Harry', pet=pet) | |
print(model) | |
#> pet=<__main__.Pet object at 0x0123456789ab> owner='Harry' | |
print(model.pet) | |
#> <__main__.Pet object at 0x0123456789ab> | |
print(model.pet.name) | |
#> Hedwig | |
print(type(model.pet)) | |
#> <class '__main__.Pet'> | |
try: | |
# If the value is not an instance of the type, it's invalid | |
Model(owner='Harry', pet='Hedwig') | |
except ValidationError as e: | |
print(e) | |
''' | |
1 validation error for Model | |
pet | |
Input should be an instance of Pet [type=is_instance_of, input_value='Hedwig', input_type=str] | |
''' | |
# Nothing in the instance of the arbitrary type is checked | |
# Here name probably should have been a str, but it's not validated | |
pet2 = Pet(name=42) | |
model2 = Model(owner='Harry', pet=pet2) | |
print(model2) | |
#> pet=<__main__.Pet object at 0x0123456789ab> owner='Harry' | |
print(model2.pet) | |
#> <__main__.Pet object at 0x0123456789ab> | |
print(model2.pet.name) | |
#> 42 | |
print(type(model2.pet)) | |
#> <class '__main__.Pet'> | |
``` | |
""" | |
from_attributes: bool | |
""" | |
Whether to build models and look up discriminators of tagged unions using python object attributes. | |
""" | |
loc_by_alias: bool | |
"""Whether to use the actual key provided in the data (e.g. alias) for error `loc`s rather than the field's name. Defaults to `True`.""" | |
alias_generator: Callable[[str], str] | AliasGenerator | None | |
""" | |
A callable that takes a field name and returns an alias for it | |
or an instance of [`AliasGenerator`][pydantic.aliases.AliasGenerator]. Defaults to `None`. | |
When using a callable, the alias generator is used for both validation and serialization. | |
If you want to use different alias generators for validation and serialization, you can use | |
[`AliasGenerator`][pydantic.aliases.AliasGenerator] instead. | |
If data source field names do not match your code style (e. g. CamelCase fields), | |
you can automatically generate aliases using `alias_generator`. Here's an example with | |
a basic callable: | |
```py | |
from pydantic import BaseModel, ConfigDict | |
from pydantic.alias_generators import to_pascal | |
class Voice(BaseModel): | |
model_config = ConfigDict(alias_generator=to_pascal) | |
name: str | |
language_code: str | |
voice = Voice(Name='Filiz', LanguageCode='tr-TR') | |
print(voice.language_code) | |
#> tr-TR | |
print(voice.model_dump(by_alias=True)) | |
#> {'Name': 'Filiz', 'LanguageCode': 'tr-TR'} | |
``` | |
If you want to use different alias generators for validation and serialization, you can use | |
[`AliasGenerator`][pydantic.aliases.AliasGenerator]. | |
```py | |
from pydantic import AliasGenerator, BaseModel, ConfigDict | |
from pydantic.alias_generators import to_camel, to_pascal | |
class Athlete(BaseModel): | |
first_name: str | |
last_name: str | |
sport: str | |
model_config = ConfigDict( | |
alias_generator=AliasGenerator( | |
validation_alias=to_camel, | |
serialization_alias=to_pascal, | |
) | |
) | |
athlete = Athlete(firstName='John', lastName='Doe', sport='track') | |
print(athlete.model_dump(by_alias=True)) | |
#> {'FirstName': 'John', 'LastName': 'Doe', 'Sport': 'track'} | |
``` | |
Note: | |
Pydantic offers three built-in alias generators: [`to_pascal`][pydantic.alias_generators.to_pascal], | |
[`to_camel`][pydantic.alias_generators.to_camel], and [`to_snake`][pydantic.alias_generators.to_snake]. | |
""" | |
ignored_types: tuple[type, ...] | |
"""A tuple of types that may occur as values of class attributes without annotations. This is | |
typically used for custom descriptors (classes that behave like `property`). If an attribute is set on a | |
class without an annotation and has a type that is not in this tuple (or otherwise recognized by | |
_pydantic_), an error will be raised. Defaults to `()`. | |
""" | |
allow_inf_nan: bool | |
"""Whether to allow infinity (`+inf` an `-inf`) and NaN values to float fields. Defaults to `True`.""" | |
json_schema_extra: JsonDict | JsonSchemaExtraCallable | None | |
"""A dict or callable to provide extra JSON schema properties. Defaults to `None`.""" | |
json_encoders: dict[type[object], JsonEncoder] | None | |
""" | |
A `dict` of custom JSON encoders for specific types. Defaults to `None`. | |
!!! warning "Deprecated" | |
This config option is a carryover from v1. | |
We originally planned to remove it in v2 but didn't have a 1:1 replacement so we are keeping it for now. | |
It is still deprecated and will likely be removed in the future. | |
""" | |
# new in V2 | |
strict: bool | |
""" | |
_(new in V2)_ If `True`, strict validation is applied to all fields on the model. | |
By default, Pydantic attempts to coerce values to the correct type, when possible. | |
There are situations in which you may want to disable this behavior, and instead raise an error if a value's type | |
does not match the field's type annotation. | |
To configure strict mode for all fields on a model, you can set `strict=True` on the model. | |
```py | |
from pydantic import BaseModel, ConfigDict | |
class Model(BaseModel): | |
model_config = ConfigDict(strict=True) | |
name: str | |
age: int | |
``` | |
See [Strict Mode](../concepts/strict_mode.md) for more details. | |
See the [Conversion Table](../concepts/conversion_table.md) for more details on how Pydantic converts data in both | |
strict and lax modes. | |
""" | |
# whether instances of models and dataclasses (including subclass instances) should re-validate, default 'never' | |
revalidate_instances: Literal['always', 'never', 'subclass-instances'] | |
""" | |
When and how to revalidate models and dataclasses during validation. Accepts the string | |
values of `'never'`, `'always'` and `'subclass-instances'`. Defaults to `'never'`. | |
- `'never'` will not revalidate models and dataclasses during validation | |
- `'always'` will revalidate models and dataclasses during validation | |
- `'subclass-instances'` will revalidate models and dataclasses during validation if the instance is a | |
subclass of the model or dataclass | |
By default, model and dataclass instances are not revalidated during validation. | |
```py | |
from typing import List | |
from pydantic import BaseModel | |
class User(BaseModel, revalidate_instances='never'): # (1)! | |
hobbies: List[str] | |
class SubUser(User): | |
sins: List[str] | |
class Transaction(BaseModel): | |
user: User | |
my_user = User(hobbies=['reading']) | |
t = Transaction(user=my_user) | |
print(t) | |
#> user=User(hobbies=['reading']) | |
my_user.hobbies = [1] # (2)! | |
t = Transaction(user=my_user) # (3)! | |
print(t) | |
#> user=User(hobbies=[1]) | |
my_sub_user = SubUser(hobbies=['scuba diving'], sins=['lying']) | |
t = Transaction(user=my_sub_user) | |
print(t) | |
#> user=SubUser(hobbies=['scuba diving'], sins=['lying']) | |
``` | |
1. `revalidate_instances` is set to `'never'` by **default. | |
2. The assignment is not validated, unless you set `validate_assignment` to `True` in the model's config. | |
3. Since `revalidate_instances` is set to `never`, this is not revalidated. | |
If you want to revalidate instances during validation, you can set `revalidate_instances` to `'always'` | |
in the model's config. | |
```py | |
from typing import List | |
from pydantic import BaseModel, ValidationError | |
class User(BaseModel, revalidate_instances='always'): # (1)! | |
hobbies: List[str] | |
class SubUser(User): | |
sins: List[str] | |
class Transaction(BaseModel): | |
user: User | |
my_user = User(hobbies=['reading']) | |
t = Transaction(user=my_user) | |
print(t) | |
#> user=User(hobbies=['reading']) | |
my_user.hobbies = [1] | |
try: | |
t = Transaction(user=my_user) # (2)! | |
except ValidationError as e: | |
print(e) | |
''' | |
1 validation error for Transaction | |
user.hobbies.0 | |
Input should be a valid string [type=string_type, input_value=1, input_type=int] | |
''' | |
my_sub_user = SubUser(hobbies=['scuba diving'], sins=['lying']) | |
t = Transaction(user=my_sub_user) | |
print(t) # (3)! | |
#> user=User(hobbies=['scuba diving']) | |
``` | |
1. `revalidate_instances` is set to `'always'`. | |
2. The model is revalidated, since `revalidate_instances` is set to `'always'`. | |
3. Using `'never'` we would have gotten `user=SubUser(hobbies=['scuba diving'], sins=['lying'])`. | |
It's also possible to set `revalidate_instances` to `'subclass-instances'` to only revalidate instances | |
of subclasses of the model. | |
```py | |
from typing import List | |
from pydantic import BaseModel | |
class User(BaseModel, revalidate_instances='subclass-instances'): # (1)! | |
hobbies: List[str] | |
class SubUser(User): | |
sins: List[str] | |
class Transaction(BaseModel): | |
user: User | |
my_user = User(hobbies=['reading']) | |
t = Transaction(user=my_user) | |
print(t) | |
#> user=User(hobbies=['reading']) | |
my_user.hobbies = [1] | |
t = Transaction(user=my_user) # (2)! | |
print(t) | |
#> user=User(hobbies=[1]) | |
my_sub_user = SubUser(hobbies=['scuba diving'], sins=['lying']) | |
t = Transaction(user=my_sub_user) | |
print(t) # (3)! | |
#> user=User(hobbies=['scuba diving']) | |
``` | |
1. `revalidate_instances` is set to `'subclass-instances'`. | |
2. This is not revalidated, since `my_user` is not a subclass of `User`. | |
3. Using `'never'` we would have gotten `user=SubUser(hobbies=['scuba diving'], sins=['lying'])`. | |
""" | |
ser_json_timedelta: Literal['iso8601', 'float'] | |
""" | |
The format of JSON serialized timedeltas. Accepts the string values of `'iso8601'` and | |
`'float'`. Defaults to `'iso8601'`. | |
- `'iso8601'` will serialize timedeltas to ISO 8601 durations. | |
- `'float'` will serialize timedeltas to the total number of seconds. | |
""" | |
ser_json_bytes: Literal['utf8', 'base64'] | |
""" | |
The encoding of JSON serialized bytes. Accepts the string values of `'utf8'` and `'base64'`. | |
Defaults to `'utf8'`. | |
- `'utf8'` will serialize bytes to UTF-8 strings. | |
- `'base64'` will serialize bytes to URL safe base64 strings. | |
""" | |
ser_json_inf_nan: Literal['null', 'constants'] | |
""" | |
The encoding of JSON serialized infinity and NaN float values. Accepts the string values of `'null'` and `'constants'`. | |
Defaults to `'null'`. | |
- `'null'` will serialize infinity and NaN values as `null`. | |
- `'constants'` will serialize infinity and NaN values as `Infinity` and `NaN`. | |
""" | |
# whether to validate default values during validation, default False | |
validate_default: bool | |
"""Whether to validate default values during validation. Defaults to `False`.""" | |
validate_return: bool | |
"""whether to validate the return value from call validators. Defaults to `False`.""" | |
protected_namespaces: tuple[str, ...] | |
""" | |
A `tuple` of strings that prevent model to have field which conflict with them. | |
Defaults to `('model_', )`). | |
Pydantic prevents collisions between model attributes and `BaseModel`'s own methods by | |
namespacing them with the prefix `model_`. | |
```py | |
import warnings | |
from pydantic import BaseModel | |
warnings.filterwarnings('error') # Raise warnings as errors | |
try: | |
class Model(BaseModel): | |
model_prefixed_field: str | |
except UserWarning as e: | |
print(e) | |
''' | |
Field "model_prefixed_field" has conflict with protected namespace "model_". | |
You may be able to resolve this warning by setting `model_config['protected_namespaces'] = ()`. | |
''' | |
``` | |
You can customize this behavior using the `protected_namespaces` setting: | |
```py | |
import warnings | |
from pydantic import BaseModel, ConfigDict | |
warnings.filterwarnings('error') # Raise warnings as errors | |
try: | |
class Model(BaseModel): | |
model_prefixed_field: str | |
also_protect_field: str | |
model_config = ConfigDict( | |
protected_namespaces=('protect_me_', 'also_protect_') | |
) | |
except UserWarning as e: | |
print(e) | |
''' | |
Field "also_protect_field" has conflict with protected namespace "also_protect_". | |
You may be able to resolve this warning by setting `model_config['protected_namespaces'] = ('protect_me_',)`. | |
''' | |
``` | |
While Pydantic will only emit a warning when an item is in a protected namespace but does not actually have a collision, | |
an error _is_ raised if there is an actual collision with an existing attribute: | |
```py | |
from pydantic import BaseModel | |
try: | |
class Model(BaseModel): | |
model_validate: str | |
except NameError as e: | |
print(e) | |
''' | |
Field "model_validate" conflicts with member <bound method BaseModel.model_validate of <class 'pydantic.main.BaseModel'>> of protected namespace "model_". | |
''' | |
``` | |
""" | |
hide_input_in_errors: bool | |
""" | |
Whether to hide inputs when printing errors. Defaults to `False`. | |
Pydantic shows the input value and type when it raises `ValidationError` during the validation. | |
```py | |
from pydantic import BaseModel, ValidationError | |
class Model(BaseModel): | |
a: str | |
try: | |
Model(a=123) | |
except ValidationError as e: | |
print(e) | |
''' | |
1 validation error for Model | |
a | |
Input should be a valid string [type=string_type, input_value=123, input_type=int] | |
''' | |
``` | |
You can hide the input value and type by setting the `hide_input_in_errors` config to `True`. | |
```py | |
from pydantic import BaseModel, ConfigDict, ValidationError | |
class Model(BaseModel): | |
a: str | |
model_config = ConfigDict(hide_input_in_errors=True) | |
try: | |
Model(a=123) | |
except ValidationError as e: | |
print(e) | |
''' | |
1 validation error for Model | |
a | |
Input should be a valid string [type=string_type] | |
''' | |
``` | |
""" | |
defer_build: bool | |
""" | |
Whether to defer model validator and serializer construction until the first model validation. | |
This can be useful to avoid the overhead of building models which are only | |
used nested within other models, or when you want to manually define type namespace via | |
[`Model.model_rebuild(_types_namespace=...)`][pydantic.BaseModel.model_rebuild]. Defaults to False. | |
""" | |
plugin_settings: dict[str, object] | None | |
"""A `dict` of settings for plugins. Defaults to `None`. | |
See [Pydantic Plugins](../concepts/plugins.md) for details. | |
""" | |
schema_generator: type[_GenerateSchema] | None | |
""" | |
A custom core schema generator class to use when generating JSON schemas. | |
Useful if you want to change the way types are validated across an entire model/schema. Defaults to `None`. | |
The `GenerateSchema` interface is subject to change, currently only the `string_schema` method is public. | |
See [#6737](https://github.com/pydantic/pydantic/pull/6737) for details. | |
""" | |
json_schema_serialization_defaults_required: bool | |
""" | |
Whether fields with default values should be marked as required in the serialization schema. Defaults to `False`. | |
This ensures that the serialization schema will reflect the fact a field with a default will always be present | |
when serializing the model, even though it is not required for validation. | |
However, there are scenarios where this may be undesirable — in particular, if you want to share the schema | |
between validation and serialization, and don't mind fields with defaults being marked as not required during | |
serialization. See [#7209](https://github.com/pydantic/pydantic/issues/7209) for more details. | |
```py | |
from pydantic import BaseModel, ConfigDict | |
class Model(BaseModel): | |
a: str = 'a' | |
model_config = ConfigDict(json_schema_serialization_defaults_required=True) | |
print(Model.model_json_schema(mode='validation')) | |
''' | |
{ | |
'properties': {'a': {'default': 'a', 'title': 'A', 'type': 'string'}}, | |
'title': 'Model', | |
'type': 'object', | |
} | |
''' | |
print(Model.model_json_schema(mode='serialization')) | |
''' | |
{ | |
'properties': {'a': {'default': 'a', 'title': 'A', 'type': 'string'}}, | |
'required': ['a'], | |
'title': 'Model', | |
'type': 'object', | |
} | |
''' | |
``` | |
""" | |
json_schema_mode_override: Literal['validation', 'serialization', None] | |
""" | |
If not `None`, the specified mode will be used to generate the JSON schema regardless of what `mode` was passed to | |
the function call. Defaults to `None`. | |
This provides a way to force the JSON schema generation to reflect a specific mode, e.g., to always use the | |
validation schema. | |
It can be useful when using frameworks (such as FastAPI) that may generate different schemas for validation | |
and serialization that must both be referenced from the same schema; when this happens, we automatically append | |
`-Input` to the definition reference for the validation schema and `-Output` to the definition reference for the | |
serialization schema. By specifying a `json_schema_mode_override` though, this prevents the conflict between | |
the validation and serialization schemas (since both will use the specified schema), and so prevents the suffixes | |
from being added to the definition references. | |
```py | |
from pydantic import BaseModel, ConfigDict, Json | |
class Model(BaseModel): | |
a: Json[int] # requires a string to validate, but will dump an int | |
print(Model.model_json_schema(mode='serialization')) | |
''' | |
{ | |
'properties': {'a': {'title': 'A', 'type': 'integer'}}, | |
'required': ['a'], | |
'title': 'Model', | |
'type': 'object', | |
} | |
''' | |
class ForceInputModel(Model): | |
# the following ensures that even with mode='serialization', we | |
# will get the schema that would be generated for validation. | |
model_config = ConfigDict(json_schema_mode_override='validation') | |
print(ForceInputModel.model_json_schema(mode='serialization')) | |
''' | |
{ | |
'properties': { | |
'a': { | |
'contentMediaType': 'application/json', | |
'contentSchema': {'type': 'integer'}, | |
'title': 'A', | |
'type': 'string', | |
} | |
}, | |
'required': ['a'], | |
'title': 'ForceInputModel', | |
'type': 'object', | |
} | |
''' | |
``` | |
""" | |
coerce_numbers_to_str: bool | |
""" | |
If `True`, enables automatic coercion of any `Number` type to `str` in "lax" (non-strict) mode. Defaults to `False`. | |
Pydantic doesn't allow number types (`int`, `float`, `Decimal`) to be coerced as type `str` by default. | |
```py | |
from decimal import Decimal | |
from pydantic import BaseModel, ConfigDict, ValidationError | |
class Model(BaseModel): | |
value: str | |
try: | |
print(Model(value=42)) | |
except ValidationError as e: | |
print(e) | |
''' | |
1 validation error for Model | |
value | |
Input should be a valid string [type=string_type, input_value=42, input_type=int] | |
''' | |
class Model(BaseModel): | |
model_config = ConfigDict(coerce_numbers_to_str=True) | |
value: str | |
repr(Model(value=42).value) | |
#> "42" | |
repr(Model(value=42.13).value) | |
#> "42.13" | |
repr(Model(value=Decimal('42.13')).value) | |
#> "42.13" | |
``` | |
""" | |
regex_engine: Literal['rust-regex', 'python-re'] | |
""" | |
The regex engine to be used for pattern validation. | |
Defaults to `'rust-regex'`. | |
- `rust-regex` uses the [`regex`](https://docs.rs/regex) Rust crate, | |
which is non-backtracking and therefore more DDoS resistant, but does not support all regex features. | |
- `python-re` use the [`re`](https://docs.python.org/3/library/re.html) module, | |
which supports all regex features, but may be slower. | |
```py | |
from pydantic import BaseModel, ConfigDict, Field, ValidationError | |
class Model(BaseModel): | |
model_config = ConfigDict(regex_engine='python-re') | |
value: str = Field(pattern=r'^abc(?=def)') | |
print(Model(value='abcdef').value) | |
#> abcdef | |
try: | |
print(Model(value='abxyzcdef')) | |
except ValidationError as e: | |
print(e) | |
''' | |
1 validation error for Model | |
value | |
String should match pattern '^abc(?=def)' [type=string_pattern_mismatch, input_value='abxyzcdef', input_type=str] | |
''' | |
``` | |
""" | |
validation_error_cause: bool | |
""" | |
If `True`, Python exceptions that were part of a validation failure will be shown as an exception group as a cause. Can be useful for debugging. Defaults to `False`. | |
Note: | |
Python 3.10 and older don't support exception groups natively. <=3.10, backport must be installed: `pip install exceptiongroup`. | |
Note: | |
The structure of validation errors are likely to change in future Pydantic versions. Pydantic offers no guarantees about their structure. Should be used for visual traceback debugging only. | |
""" | |
use_attribute_docstrings: bool | |
''' | |
Whether docstrings of attributes (bare string literals immediately following the attribute declaration) | |
should be used for field descriptions. Defaults to `False`. | |
```py | |
from pydantic import BaseModel, ConfigDict, Field | |
class Model(BaseModel): | |
model_config = ConfigDict(use_attribute_docstrings=True) | |
x: str | |
""" | |
Example of an attribute docstring | |
""" | |
y: int = Field(description="Description in Field") | |
""" | |
Description in Field overrides attribute docstring | |
""" | |
print(Model.model_fields["x"].description) | |
# > Example of an attribute docstring | |
print(Model.model_fields["y"].description) | |
# > Description in Field | |
``` | |
This requires the source code of the class to be available at runtime. | |
!!! warning "Usage with `TypedDict`" | |
Due to current limitations, attribute docstrings detection may not work as expected when using `TypedDict` | |
(in particular when multiple `TypedDict` classes have the same name in the same source file). The behavior | |
can be different depending on the Python version used. | |
''' | |
cache_strings: bool | Literal['all', 'keys', 'none'] | |
""" | |
Whether to cache strings to avoid constructing new Python objects. Defaults to True. | |
Enabling this setting should significantly improve validation performance while increasing memory usage slightly. | |
- `True` or `'all'` (the default): cache all strings | |
- `'keys'`: cache only dictionary keys | |
- `False` or `'none'`: no caching | |
!!! note | |
`True` or `'all'` is required to cache strings during general validation because | |
validators don't know if they're in a key or a value. | |
!!! tip | |
If repeated strings are rare, it's recommended to use `'keys'` or `'none'` to reduce memory usage, | |
as the performance difference is minimal if repeated strings are rare. | |
""" | |
_TypeT = TypeVar('_TypeT', bound=type) | |
def with_config(config: ConfigDict) -> Callable[[_TypeT], _TypeT]: | |
"""Usage docs: https://docs.pydantic.dev/2.7/concepts/config/#configuration-with-dataclass-from-the-standard-library-or-typeddict | |
A convenience decorator to set a [Pydantic configuration](config.md) on a `TypedDict` or a `dataclass` from the standard library. | |
Although the configuration can be set using the `__pydantic_config__` attribute, it does not play well with type checkers, | |
especially with `TypedDict`. | |
!!! example "Usage" | |
```py | |
from typing_extensions import TypedDict | |
from pydantic import ConfigDict, TypeAdapter, with_config | |
@with_config(ConfigDict(str_to_lower=True)) | |
class Model(TypedDict): | |
x: str | |
ta = TypeAdapter(Model) | |
print(ta.validate_python({'x': 'ABC'})) | |
#> {'x': 'abc'} | |
``` | |
""" | |
def inner(TypedDictClass: _TypeT, /) -> _TypeT: | |
TypedDictClass.__pydantic_config__ = config | |
return TypedDictClass | |
return inner | |
__getattr__ = getattr_migration(__name__) | |