peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pydantic
/functional_serializers.py
"""This module contains related classes and functions for serialization.""" | |
from __future__ import annotations | |
import dataclasses | |
from functools import partialmethod | |
from typing import TYPE_CHECKING, Any, Callable, TypeVar, Union, overload | |
from pydantic_core import PydanticUndefined, core_schema | |
from pydantic_core import core_schema as _core_schema | |
from typing_extensions import Annotated, Literal, TypeAlias | |
from . import PydanticUndefinedAnnotation | |
from ._internal import _decorators, _internal_dataclass | |
from .annotated_handlers import GetCoreSchemaHandler | |
class PlainSerializer: | |
"""Plain serializers use a function to modify the output of serialization. | |
This is particularly helpful when you want to customize the serialization for annotated types. | |
Consider an input of `list`, which will be serialized into a space-delimited string. | |
```python | |
from typing import List | |
from typing_extensions import Annotated | |
from pydantic import BaseModel, PlainSerializer | |
CustomStr = Annotated[ | |
List, PlainSerializer(lambda x: ' '.join(x), return_type=str) | |
] | |
class StudentModel(BaseModel): | |
courses: CustomStr | |
student = StudentModel(courses=['Math', 'Chemistry', 'English']) | |
print(student.model_dump()) | |
#> {'courses': 'Math Chemistry English'} | |
``` | |
Attributes: | |
func: The serializer function. | |
return_type: The return type for the function. If omitted it will be inferred from the type annotation. | |
when_used: Determines when this serializer should be used. Accepts a string with values `'always'`, | |
`'unless-none'`, `'json'`, and `'json-unless-none'`. Defaults to 'always'. | |
""" | |
func: core_schema.SerializerFunction | |
return_type: Any = PydanticUndefined | |
when_used: Literal['always', 'unless-none', 'json', 'json-unless-none'] = 'always' | |
def __get_pydantic_core_schema__(self, source_type: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema: | |
"""Gets the Pydantic core schema. | |
Args: | |
source_type: The source type. | |
handler: The `GetCoreSchemaHandler` instance. | |
Returns: | |
The Pydantic core schema. | |
""" | |
schema = handler(source_type) | |
try: | |
return_type = _decorators.get_function_return_type( | |
self.func, self.return_type, handler._get_types_namespace() | |
) | |
except NameError as e: | |
raise PydanticUndefinedAnnotation.from_name_error(e) from e | |
return_schema = None if return_type is PydanticUndefined else handler.generate_schema(return_type) | |
schema['serialization'] = core_schema.plain_serializer_function_ser_schema( | |
function=self.func, | |
info_arg=_decorators.inspect_annotated_serializer(self.func, 'plain'), | |
return_schema=return_schema, | |
when_used=self.when_used, | |
) | |
return schema | |
class WrapSerializer: | |
"""Wrap serializers receive the raw inputs along with a handler function that applies the standard serialization | |
logic, and can modify the resulting value before returning it as the final output of serialization. | |
For example, here's a scenario in which a wrap serializer transforms timezones to UTC **and** utilizes the existing `datetime` serialization logic. | |
```python | |
from datetime import datetime, timezone | |
from typing import Any, Dict | |
from typing_extensions import Annotated | |
from pydantic import BaseModel, WrapSerializer | |
class EventDatetime(BaseModel): | |
start: datetime | |
end: datetime | |
def convert_to_utc(value: Any, handler, info) -> Dict[str, datetime]: | |
# Note that `helper` can actually help serialize the `value` for further custom serialization in case it's a subclass. | |
partial_result = handler(value, info) | |
if info.mode == 'json': | |
return { | |
k: datetime.fromisoformat(v).astimezone(timezone.utc) | |
for k, v in partial_result.items() | |
} | |
return {k: v.astimezone(timezone.utc) for k, v in partial_result.items()} | |
UTCEventDatetime = Annotated[EventDatetime, WrapSerializer(convert_to_utc)] | |
class EventModel(BaseModel): | |
event_datetime: UTCEventDatetime | |
dt = EventDatetime( | |
start='2024-01-01T07:00:00-08:00', end='2024-01-03T20:00:00+06:00' | |
) | |
event = EventModel(event_datetime=dt) | |
print(event.model_dump()) | |
''' | |
{ | |
'event_datetime': { | |
'start': datetime.datetime( | |
2024, 1, 1, 15, 0, tzinfo=datetime.timezone.utc | |
), | |
'end': datetime.datetime( | |
2024, 1, 3, 14, 0, tzinfo=datetime.timezone.utc | |
), | |
} | |
} | |
''' | |
print(event.model_dump_json()) | |
''' | |
{"event_datetime":{"start":"2024-01-01T15:00:00Z","end":"2024-01-03T14:00:00Z"}} | |
''' | |
``` | |
Attributes: | |
func: The serializer function to be wrapped. | |
return_type: The return type for the function. If omitted it will be inferred from the type annotation. | |
when_used: Determines when this serializer should be used. Accepts a string with values `'always'`, | |
`'unless-none'`, `'json'`, and `'json-unless-none'`. Defaults to 'always'. | |
""" | |
func: core_schema.WrapSerializerFunction | |
return_type: Any = PydanticUndefined | |
when_used: Literal['always', 'unless-none', 'json', 'json-unless-none'] = 'always' | |
def __get_pydantic_core_schema__(self, source_type: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema: | |
"""This method is used to get the Pydantic core schema of the class. | |
Args: | |
source_type: Source type. | |
handler: Core schema handler. | |
Returns: | |
The generated core schema of the class. | |
""" | |
schema = handler(source_type) | |
try: | |
return_type = _decorators.get_function_return_type( | |
self.func, self.return_type, handler._get_types_namespace() | |
) | |
except NameError as e: | |
raise PydanticUndefinedAnnotation.from_name_error(e) from e | |
return_schema = None if return_type is PydanticUndefined else handler.generate_schema(return_type) | |
schema['serialization'] = core_schema.wrap_serializer_function_ser_schema( | |
function=self.func, | |
info_arg=_decorators.inspect_annotated_serializer(self.func, 'wrap'), | |
return_schema=return_schema, | |
when_used=self.when_used, | |
) | |
return schema | |
if TYPE_CHECKING: | |
_PartialClsOrStaticMethod: TypeAlias = Union[classmethod[Any, Any, Any], staticmethod[Any, Any], partialmethod[Any]] | |
_PlainSerializationFunction = Union[_core_schema.SerializerFunction, _PartialClsOrStaticMethod] | |
_WrapSerializationFunction = Union[_core_schema.WrapSerializerFunction, _PartialClsOrStaticMethod] | |
_PlainSerializeMethodType = TypeVar('_PlainSerializeMethodType', bound=_PlainSerializationFunction) | |
_WrapSerializeMethodType = TypeVar('_WrapSerializeMethodType', bound=_WrapSerializationFunction) | |
def field_serializer( | |
field: str, | |
/, | |
*fields: str, | |
return_type: Any = ..., | |
when_used: Literal['always', 'unless-none', 'json', 'json-unless-none'] = ..., | |
check_fields: bool | None = ..., | |
) -> Callable[[_PlainSerializeMethodType], _PlainSerializeMethodType]: | |
... | |
def field_serializer( | |
field: str, | |
/, | |
*fields: str, | |
mode: Literal['plain'], | |
return_type: Any = ..., | |
when_used: Literal['always', 'unless-none', 'json', 'json-unless-none'] = ..., | |
check_fields: bool | None = ..., | |
) -> Callable[[_PlainSerializeMethodType], _PlainSerializeMethodType]: | |
... | |
def field_serializer( | |
field: str, | |
/, | |
*fields: str, | |
mode: Literal['wrap'], | |
return_type: Any = ..., | |
when_used: Literal['always', 'unless-none', 'json', 'json-unless-none'] = ..., | |
check_fields: bool | None = ..., | |
) -> Callable[[_WrapSerializeMethodType], _WrapSerializeMethodType]: | |
... | |
def field_serializer( | |
*fields: str, | |
mode: Literal['plain', 'wrap'] = 'plain', | |
return_type: Any = PydanticUndefined, | |
when_used: Literal['always', 'unless-none', 'json', 'json-unless-none'] = 'always', | |
check_fields: bool | None = None, | |
) -> Callable[[Any], Any]: | |
"""Decorator that enables custom field serialization. | |
In the below example, a field of type `set` is used to mitigate duplication. A `field_serializer` is used to serialize the data as a sorted list. | |
```python | |
from typing import Set | |
from pydantic import BaseModel, field_serializer | |
class StudentModel(BaseModel): | |
name: str = 'Jane' | |
courses: Set[str] | |
@field_serializer('courses', when_used='json') | |
def serialize_courses_in_order(courses: Set[str]): | |
return sorted(courses) | |
student = StudentModel(courses={'Math', 'Chemistry', 'English'}) | |
print(student.model_dump_json()) | |
#> {"name":"Jane","courses":["Chemistry","English","Math"]} | |
``` | |
See [Custom serializers](../concepts/serialization.md#custom-serializers) for more information. | |
Four signatures are supported: | |
- `(self, value: Any, info: FieldSerializationInfo)` | |
- `(self, value: Any, nxt: SerializerFunctionWrapHandler, info: FieldSerializationInfo)` | |
- `(value: Any, info: SerializationInfo)` | |
- `(value: Any, nxt: SerializerFunctionWrapHandler, info: SerializationInfo)` | |
Args: | |
fields: Which field(s) the method should be called on. | |
mode: The serialization mode. | |
- `plain` means the function will be called instead of the default serialization logic, | |
- `wrap` means the function will be called with an argument to optionally call the | |
default serialization logic. | |
return_type: Optional return type for the function, if omitted it will be inferred from the type annotation. | |
when_used: Determines the serializer will be used for serialization. | |
check_fields: Whether to check that the fields actually exist on the model. | |
Returns: | |
The decorator function. | |
""" | |
def dec( | |
f: Callable[..., Any] | staticmethod[Any, Any] | classmethod[Any, Any, Any], | |
) -> _decorators.PydanticDescriptorProxy[Any]: | |
dec_info = _decorators.FieldSerializerDecoratorInfo( | |
fields=fields, | |
mode=mode, | |
return_type=return_type, | |
when_used=when_used, | |
check_fields=check_fields, | |
) | |
return _decorators.PydanticDescriptorProxy(f, dec_info) | |
return dec | |
FuncType = TypeVar('FuncType', bound=Callable[..., Any]) | |
def model_serializer(__f: FuncType) -> FuncType: | |
... | |
def model_serializer( | |
*, | |
mode: Literal['plain', 'wrap'] = ..., | |
when_used: Literal['always', 'unless-none', 'json', 'json-unless-none'] = 'always', | |
return_type: Any = ..., | |
) -> Callable[[FuncType], FuncType]: | |
... | |
def model_serializer( | |
f: Callable[..., Any] | None = None, | |
/, | |
*, | |
mode: Literal['plain', 'wrap'] = 'plain', | |
when_used: Literal['always', 'unless-none', 'json', 'json-unless-none'] = 'always', | |
return_type: Any = PydanticUndefined, | |
) -> Callable[[Any], Any]: | |
"""Decorator that enables custom model serialization. | |
This is useful when a model need to be serialized in a customized manner, allowing for flexibility beyond just specific fields. | |
An example would be to serialize temperature to the same temperature scale, such as degrees Celsius. | |
```python | |
from typing import Literal | |
from pydantic import BaseModel, model_serializer | |
class TemperatureModel(BaseModel): | |
unit: Literal['C', 'F'] | |
value: int | |
@model_serializer() | |
def serialize_model(self): | |
if self.unit == 'F': | |
return {'unit': 'C', 'value': int((self.value - 32) / 1.8)} | |
return {'unit': self.unit, 'value': self.value} | |
temperature = TemperatureModel(unit='F', value=212) | |
print(temperature.model_dump()) | |
#> {'unit': 'C', 'value': 100} | |
``` | |
See [Custom serializers](../concepts/serialization.md#custom-serializers) for more information. | |
Args: | |
f: The function to be decorated. | |
mode: The serialization mode. | |
- `'plain'` means the function will be called instead of the default serialization logic | |
- `'wrap'` means the function will be called with an argument to optionally call the default | |
serialization logic. | |
when_used: Determines when this serializer should be used. | |
return_type: The return type for the function. If omitted it will be inferred from the type annotation. | |
Returns: | |
The decorator function. | |
""" | |
def dec(f: Callable[..., Any]) -> _decorators.PydanticDescriptorProxy[Any]: | |
dec_info = _decorators.ModelSerializerDecoratorInfo(mode=mode, return_type=return_type, when_used=when_used) | |
return _decorators.PydanticDescriptorProxy(f, dec_info) | |
if f is None: | |
return dec | |
else: | |
return dec(f) # type: ignore | |
AnyType = TypeVar('AnyType') | |
if TYPE_CHECKING: | |
SerializeAsAny = Annotated[AnyType, ...] # SerializeAsAny[list[str]] will be treated by type checkers as list[str] | |
"""Force serialization to ignore whatever is defined in the schema and instead ask the object | |
itself how it should be serialized. | |
In particular, this means that when model subclasses are serialized, fields present in the subclass | |
but not in the original schema will be included. | |
""" | |
else: | |
class SerializeAsAny: # noqa: D101 | |
def __class_getitem__(cls, item: Any) -> Any: | |
return Annotated[item, SerializeAsAny()] | |
def __get_pydantic_core_schema__( | |
self, source_type: Any, handler: GetCoreSchemaHandler | |
) -> core_schema.CoreSchema: | |
schema = handler(source_type) | |
schema_to_update = schema | |
while schema_to_update['type'] == 'definitions': | |
schema_to_update = schema_to_update.copy() | |
schema_to_update = schema_to_update['schema'] | |
schema_to_update['serialization'] = core_schema.wrap_serializer_function_ser_schema( | |
lambda x, h: h(x), schema=core_schema.any_schema() | |
) | |
return schema | |
__hash__ = object.__hash__ | |