peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pydantic
/functional_validators.py
"""This module contains related classes and functions for validation.""" | |
from __future__ import annotations as _annotations | |
import dataclasses | |
import sys | |
from functools import partialmethod | |
from types import FunctionType | |
from typing import TYPE_CHECKING, Any, Callable, TypeVar, Union, cast, overload | |
from pydantic_core import core_schema | |
from pydantic_core import core_schema as _core_schema | |
from typing_extensions import Annotated, Literal, TypeAlias | |
from . import GetCoreSchemaHandler as _GetCoreSchemaHandler | |
from ._internal import _core_metadata, _decorators, _generics, _internal_dataclass | |
from .annotated_handlers import GetCoreSchemaHandler | |
from .errors import PydanticUserError | |
if sys.version_info < (3, 11): | |
from typing_extensions import Protocol | |
else: | |
from typing import Protocol | |
_inspect_validator = _decorators.inspect_validator | |
class AfterValidator: | |
"""Usage docs: https://docs.pydantic.dev/2.7/concepts/validators/#annotated-validators | |
A metadata class that indicates that a validation should be applied **after** the inner validation logic. | |
Attributes: | |
func: The validator function. | |
Example: | |
```py | |
from typing_extensions import Annotated | |
from pydantic import AfterValidator, BaseModel, ValidationError | |
MyInt = Annotated[int, AfterValidator(lambda v: v + 1)] | |
class Model(BaseModel): | |
a: MyInt | |
print(Model(a=1).a) | |
#> 2 | |
try: | |
Model(a='a') | |
except ValidationError as e: | |
print(e.json(indent=2)) | |
''' | |
[ | |
{ | |
"type": "int_parsing", | |
"loc": [ | |
"a" | |
], | |
"msg": "Input should be a valid integer, unable to parse string as an integer", | |
"input": "a", | |
"url": "https://errors.pydantic.dev/2/v/int_parsing" | |
} | |
] | |
''' | |
``` | |
""" | |
func: core_schema.NoInfoValidatorFunction | core_schema.WithInfoValidatorFunction | |
def __get_pydantic_core_schema__(self, source_type: Any, handler: _GetCoreSchemaHandler) -> core_schema.CoreSchema: | |
schema = handler(source_type) | |
info_arg = _inspect_validator(self.func, 'after') | |
if info_arg: | |
func = cast(core_schema.WithInfoValidatorFunction, self.func) | |
return core_schema.with_info_after_validator_function(func, schema=schema, field_name=handler.field_name) | |
else: | |
func = cast(core_schema.NoInfoValidatorFunction, self.func) | |
return core_schema.no_info_after_validator_function(func, schema=schema) | |
class BeforeValidator: | |
"""Usage docs: https://docs.pydantic.dev/2.7/concepts/validators/#annotated-validators | |
A metadata class that indicates that a validation should be applied **before** the inner validation logic. | |
Attributes: | |
func: The validator function. | |
Example: | |
```py | |
from typing_extensions import Annotated | |
from pydantic import BaseModel, BeforeValidator | |
MyInt = Annotated[int, BeforeValidator(lambda v: v + 1)] | |
class Model(BaseModel): | |
a: MyInt | |
print(Model(a=1).a) | |
#> 2 | |
try: | |
Model(a='a') | |
except TypeError as e: | |
print(e) | |
#> can only concatenate str (not "int") to str | |
``` | |
""" | |
func: core_schema.NoInfoValidatorFunction | core_schema.WithInfoValidatorFunction | |
def __get_pydantic_core_schema__(self, source_type: Any, handler: _GetCoreSchemaHandler) -> core_schema.CoreSchema: | |
schema = handler(source_type) | |
info_arg = _inspect_validator(self.func, 'before') | |
if info_arg: | |
func = cast(core_schema.WithInfoValidatorFunction, self.func) | |
return core_schema.with_info_before_validator_function(func, schema=schema, field_name=handler.field_name) | |
else: | |
func = cast(core_schema.NoInfoValidatorFunction, self.func) | |
return core_schema.no_info_before_validator_function(func, schema=schema) | |
class PlainValidator: | |
"""Usage docs: https://docs.pydantic.dev/2.7/concepts/validators/#annotated-validators | |
A metadata class that indicates that a validation should be applied **instead** of the inner validation logic. | |
Attributes: | |
func: The validator function. | |
Example: | |
```py | |
from typing_extensions import Annotated | |
from pydantic import BaseModel, PlainValidator | |
MyInt = Annotated[int, PlainValidator(lambda v: int(v) + 1)] | |
class Model(BaseModel): | |
a: MyInt | |
print(Model(a='1').a) | |
#> 2 | |
``` | |
""" | |
func: core_schema.NoInfoValidatorFunction | core_schema.WithInfoValidatorFunction | |
def __get_pydantic_core_schema__(self, source_type: Any, handler: _GetCoreSchemaHandler) -> core_schema.CoreSchema: | |
# Note that for some valid uses of PlainValidator, it is not possible to generate a core schema for the | |
# source_type, so calling `handler(source_type)` will error, which prevents us from generating a proper | |
# serialization schema. To work around this for use cases that will not involve serialization, we simply | |
# catch any PydanticSchemaGenerationError that may be raised while attempting to build the serialization schema | |
# and abort any attempts to handle special serialization. | |
from pydantic import PydanticSchemaGenerationError | |
try: | |
schema = handler(source_type) | |
serialization = core_schema.wrap_serializer_function_ser_schema(function=lambda v, h: h(v), schema=schema) | |
except PydanticSchemaGenerationError: | |
serialization = None | |
info_arg = _inspect_validator(self.func, 'plain') | |
if info_arg: | |
func = cast(core_schema.WithInfoValidatorFunction, self.func) | |
return core_schema.with_info_plain_validator_function( | |
func, field_name=handler.field_name, serialization=serialization | |
) | |
else: | |
func = cast(core_schema.NoInfoValidatorFunction, self.func) | |
return core_schema.no_info_plain_validator_function(func, serialization=serialization) | |
class WrapValidator: | |
"""Usage docs: https://docs.pydantic.dev/2.7/concepts/validators/#annotated-validators | |
A metadata class that indicates that a validation should be applied **around** the inner validation logic. | |
Attributes: | |
func: The validator function. | |
```py | |
from datetime import datetime | |
from typing_extensions import Annotated | |
from pydantic import BaseModel, ValidationError, WrapValidator | |
def validate_timestamp(v, handler): | |
if v == 'now': | |
# we don't want to bother with further validation, just return the new value | |
return datetime.now() | |
try: | |
return handler(v) | |
except ValidationError: | |
# validation failed, in this case we want to return a default value | |
return datetime(2000, 1, 1) | |
MyTimestamp = Annotated[datetime, WrapValidator(validate_timestamp)] | |
class Model(BaseModel): | |
a: MyTimestamp | |
print(Model(a='now').a) | |
#> 2032-01-02 03:04:05.000006 | |
print(Model(a='invalid').a) | |
#> 2000-01-01 00:00:00 | |
``` | |
""" | |
func: core_schema.NoInfoWrapValidatorFunction | core_schema.WithInfoWrapValidatorFunction | |
def __get_pydantic_core_schema__(self, source_type: Any, handler: _GetCoreSchemaHandler) -> core_schema.CoreSchema: | |
schema = handler(source_type) | |
info_arg = _inspect_validator(self.func, 'wrap') | |
if info_arg: | |
func = cast(core_schema.WithInfoWrapValidatorFunction, self.func) | |
return core_schema.with_info_wrap_validator_function(func, schema=schema, field_name=handler.field_name) | |
else: | |
func = cast(core_schema.NoInfoWrapValidatorFunction, self.func) | |
return core_schema.no_info_wrap_validator_function(func, schema=schema) | |
if TYPE_CHECKING: | |
class _OnlyValueValidatorClsMethod(Protocol): | |
def __call__(self, cls: Any, value: Any, /) -> Any: | |
... | |
class _V2ValidatorClsMethod(Protocol): | |
def __call__(self, cls: Any, value: Any, info: _core_schema.ValidationInfo, /) -> Any: | |
... | |
class _V2WrapValidatorClsMethod(Protocol): | |
def __call__( | |
self, | |
cls: Any, | |
value: Any, | |
handler: _core_schema.ValidatorFunctionWrapHandler, | |
info: _core_schema.ValidationInfo, | |
/, | |
) -> Any: | |
... | |
_V2Validator = Union[ | |
_V2ValidatorClsMethod, | |
_core_schema.WithInfoValidatorFunction, | |
_OnlyValueValidatorClsMethod, | |
_core_schema.NoInfoValidatorFunction, | |
] | |
_V2WrapValidator = Union[ | |
_V2WrapValidatorClsMethod, | |
_core_schema.WithInfoWrapValidatorFunction, | |
] | |
_PartialClsOrStaticMethod: TypeAlias = Union[classmethod[Any, Any, Any], staticmethod[Any, Any], partialmethod[Any]] | |
_V2BeforeAfterOrPlainValidatorType = TypeVar( | |
'_V2BeforeAfterOrPlainValidatorType', | |
_V2Validator, | |
_PartialClsOrStaticMethod, | |
) | |
_V2WrapValidatorType = TypeVar('_V2WrapValidatorType', _V2WrapValidator, _PartialClsOrStaticMethod) | |
def field_validator( | |
field: str, | |
/, | |
*fields: str, | |
mode: Literal['before', 'after', 'plain'] = ..., | |
check_fields: bool | None = ..., | |
) -> Callable[[_V2BeforeAfterOrPlainValidatorType], _V2BeforeAfterOrPlainValidatorType]: | |
... | |
def field_validator( | |
field: str, | |
/, | |
*fields: str, | |
mode: Literal['wrap'], | |
check_fields: bool | None = ..., | |
) -> Callable[[_V2WrapValidatorType], _V2WrapValidatorType]: | |
... | |
FieldValidatorModes: TypeAlias = Literal['before', 'after', 'wrap', 'plain'] | |
def field_validator( | |
field: str, | |
/, | |
*fields: str, | |
mode: FieldValidatorModes = 'after', | |
check_fields: bool | None = None, | |
) -> Callable[[Any], Any]: | |
"""Usage docs: https://docs.pydantic.dev/2.7/concepts/validators/#field-validators | |
Decorate methods on the class indicating that they should be used to validate fields. | |
Example usage: | |
```py | |
from typing import Any | |
from pydantic import ( | |
BaseModel, | |
ValidationError, | |
field_validator, | |
) | |
class Model(BaseModel): | |
a: str | |
@field_validator('a') | |
@classmethod | |
def ensure_foobar(cls, v: Any): | |
if 'foobar' not in v: | |
raise ValueError('"foobar" not found in a') | |
return v | |
print(repr(Model(a='this is foobar good'))) | |
#> Model(a='this is foobar good') | |
try: | |
Model(a='snap') | |
except ValidationError as exc_info: | |
print(exc_info) | |
''' | |
1 validation error for Model | |
a | |
Value error, "foobar" not found in a [type=value_error, input_value='snap', input_type=str] | |
''' | |
``` | |
For more in depth examples, see [Field Validators](../concepts/validators.md#field-validators). | |
Args: | |
field: The first field the `field_validator` should be called on; this is separate | |
from `fields` to ensure an error is raised if you don't pass at least one. | |
*fields: Additional field(s) the `field_validator` should be called on. | |
mode: Specifies whether to validate the fields before or after validation. | |
check_fields: Whether to check that the fields actually exist on the model. | |
Returns: | |
A decorator that can be used to decorate a function to be used as a field_validator. | |
Raises: | |
PydanticUserError: | |
- If `@field_validator` is used bare (with no fields). | |
- If the args passed to `@field_validator` as fields are not strings. | |
- If `@field_validator` applied to instance methods. | |
""" | |
if isinstance(field, FunctionType): | |
raise PydanticUserError( | |
'`@field_validator` should be used with fields and keyword arguments, not bare. ' | |
"E.g. usage should be `@validator('<field_name>', ...)`", | |
code='validator-no-fields', | |
) | |
fields = field, *fields | |
if not all(isinstance(field, str) for field in fields): | |
raise PydanticUserError( | |
'`@field_validator` fields should be passed as separate string args. ' | |
"E.g. usage should be `@validator('<field_name_1>', '<field_name_2>', ...)`", | |
code='validator-invalid-fields', | |
) | |
def dec( | |
f: Callable[..., Any] | staticmethod[Any, Any] | classmethod[Any, Any, Any], | |
) -> _decorators.PydanticDescriptorProxy[Any]: | |
if _decorators.is_instance_method_from_sig(f): | |
raise PydanticUserError( | |
'`@field_validator` cannot be applied to instance methods', code='validator-instance-method' | |
) | |
# auto apply the @classmethod decorator | |
f = _decorators.ensure_classmethod_based_on_signature(f) | |
dec_info = _decorators.FieldValidatorDecoratorInfo(fields=fields, mode=mode, check_fields=check_fields) | |
return _decorators.PydanticDescriptorProxy(f, dec_info) | |
return dec | |
_ModelType = TypeVar('_ModelType') | |
_ModelTypeCo = TypeVar('_ModelTypeCo', covariant=True) | |
class ModelWrapValidatorHandler(_core_schema.ValidatorFunctionWrapHandler, Protocol[_ModelTypeCo]): | |
"""@model_validator decorated function handler argument type. This is used when `mode='wrap'`.""" | |
def __call__( # noqa: D102 | |
self, | |
value: Any, | |
outer_location: str | int | None = None, | |
/, | |
) -> _ModelTypeCo: # pragma: no cover | |
... | |
class ModelWrapValidatorWithoutInfo(Protocol[_ModelType]): | |
"""A @model_validator decorated function signature. | |
This is used when `mode='wrap'` and the function does not have info argument. | |
""" | |
def __call__( # noqa: D102 | |
self, | |
cls: type[_ModelType], | |
# this can be a dict, a model instance | |
# or anything else that gets passed to validate_python | |
# thus validators _must_ handle all cases | |
value: Any, | |
handler: ModelWrapValidatorHandler[_ModelType], | |
/, | |
) -> _ModelType: | |
... | |
class ModelWrapValidator(Protocol[_ModelType]): | |
"""A @model_validator decorated function signature. This is used when `mode='wrap'`.""" | |
def __call__( # noqa: D102 | |
self, | |
cls: type[_ModelType], | |
# this can be a dict, a model instance | |
# or anything else that gets passed to validate_python | |
# thus validators _must_ handle all cases | |
value: Any, | |
handler: ModelWrapValidatorHandler[_ModelType], | |
info: _core_schema.ValidationInfo, | |
/, | |
) -> _ModelType: | |
... | |
class FreeModelBeforeValidatorWithoutInfo(Protocol): | |
"""A @model_validator decorated function signature. | |
This is used when `mode='before'` and the function does not have info argument. | |
""" | |
def __call__( # noqa: D102 | |
self, | |
# this can be a dict, a model instance | |
# or anything else that gets passed to validate_python | |
# thus validators _must_ handle all cases | |
value: Any, | |
/, | |
) -> Any: | |
... | |
class ModelBeforeValidatorWithoutInfo(Protocol): | |
"""A @model_validator decorated function signature. | |
This is used when `mode='before'` and the function does not have info argument. | |
""" | |
def __call__( # noqa: D102 | |
self, | |
cls: Any, | |
# this can be a dict, a model instance | |
# or anything else that gets passed to validate_python | |
# thus validators _must_ handle all cases | |
value: Any, | |
/, | |
) -> Any: | |
... | |
class FreeModelBeforeValidator(Protocol): | |
"""A `@model_validator` decorated function signature. This is used when `mode='before'`.""" | |
def __call__( # noqa: D102 | |
self, | |
# this can be a dict, a model instance | |
# or anything else that gets passed to validate_python | |
# thus validators _must_ handle all cases | |
value: Any, | |
info: _core_schema.ValidationInfo, | |
/, | |
) -> Any: | |
... | |
class ModelBeforeValidator(Protocol): | |
"""A `@model_validator` decorated function signature. This is used when `mode='before'`.""" | |
def __call__( # noqa: D102 | |
self, | |
cls: Any, | |
# this can be a dict, a model instance | |
# or anything else that gets passed to validate_python | |
# thus validators _must_ handle all cases | |
value: Any, | |
info: _core_schema.ValidationInfo, | |
/, | |
) -> Any: | |
... | |
ModelAfterValidatorWithoutInfo = Callable[[_ModelType], _ModelType] | |
"""A `@model_validator` decorated function signature. This is used when `mode='after'` and the function does not | |
have info argument. | |
""" | |
ModelAfterValidator = Callable[[_ModelType, _core_schema.ValidationInfo], _ModelType] | |
"""A `@model_validator` decorated function signature. This is used when `mode='after'`.""" | |
_AnyModelWrapValidator = Union[ModelWrapValidator[_ModelType], ModelWrapValidatorWithoutInfo[_ModelType]] | |
_AnyModeBeforeValidator = Union[ | |
FreeModelBeforeValidator, ModelBeforeValidator, FreeModelBeforeValidatorWithoutInfo, ModelBeforeValidatorWithoutInfo | |
] | |
_AnyModelAfterValidator = Union[ModelAfterValidator[_ModelType], ModelAfterValidatorWithoutInfo[_ModelType]] | |
def model_validator( | |
*, | |
mode: Literal['wrap'], | |
) -> Callable[ | |
[_AnyModelWrapValidator[_ModelType]], _decorators.PydanticDescriptorProxy[_decorators.ModelValidatorDecoratorInfo] | |
]: | |
... | |
def model_validator( | |
*, | |
mode: Literal['before'], | |
) -> Callable[[_AnyModeBeforeValidator], _decorators.PydanticDescriptorProxy[_decorators.ModelValidatorDecoratorInfo]]: | |
... | |
def model_validator( | |
*, | |
mode: Literal['after'], | |
) -> Callable[ | |
[_AnyModelAfterValidator[_ModelType]], _decorators.PydanticDescriptorProxy[_decorators.ModelValidatorDecoratorInfo] | |
]: | |
... | |
def model_validator( | |
*, | |
mode: Literal['wrap', 'before', 'after'], | |
) -> Any: | |
"""Usage docs: https://docs.pydantic.dev/2.7/concepts/validators/#model-validators | |
Decorate model methods for validation purposes. | |
Example usage: | |
```py | |
from typing_extensions import Self | |
from pydantic import BaseModel, ValidationError, model_validator | |
class Square(BaseModel): | |
width: float | |
height: float | |
@model_validator(mode='after') | |
def verify_square(self) -> Self: | |
if self.width != self.height: | |
raise ValueError('width and height do not match') | |
return self | |
s = Square(width=1, height=1) | |
print(repr(s)) | |
#> Square(width=1.0, height=1.0) | |
try: | |
Square(width=1, height=2) | |
except ValidationError as e: | |
print(e) | |
''' | |
1 validation error for Square | |
Value error, width and height do not match [type=value_error, input_value={'width': 1, 'height': 2}, input_type=dict] | |
''' | |
``` | |
For more in depth examples, see [Model Validators](../concepts/validators.md#model-validators). | |
Args: | |
mode: A required string literal that specifies the validation mode. | |
It can be one of the following: 'wrap', 'before', or 'after'. | |
Returns: | |
A decorator that can be used to decorate a function to be used as a model validator. | |
""" | |
def dec(f: Any) -> _decorators.PydanticDescriptorProxy[Any]: | |
# auto apply the @classmethod decorator | |
f = _decorators.ensure_classmethod_based_on_signature(f) | |
dec_info = _decorators.ModelValidatorDecoratorInfo(mode=mode) | |
return _decorators.PydanticDescriptorProxy(f, dec_info) | |
return dec | |
AnyType = TypeVar('AnyType') | |
if TYPE_CHECKING: | |
# If we add configurable attributes to IsInstance, we'd probably need to stop hiding it from type checkers like this | |
InstanceOf = Annotated[AnyType, ...] # `IsInstance[Sequence]` will be recognized by type checkers as `Sequence` | |
else: | |
class InstanceOf: | |
'''Generic type for annotating a type that is an instance of a given class. | |
Example: | |
```py | |
from pydantic import BaseModel, InstanceOf | |
class Foo: | |
... | |
class Bar(BaseModel): | |
foo: InstanceOf[Foo] | |
Bar(foo=Foo()) | |
try: | |
Bar(foo=42) | |
except ValidationError as e: | |
print(e) | |
""" | |
[ | |
β { | |
β β 'type': 'is_instance_of', | |
β β 'loc': ('foo',), | |
β β 'msg': 'Input should be an instance of Foo', | |
β β 'input': 42, | |
β β 'ctx': {'class': 'Foo'}, | |
β β 'url': 'https://errors.pydantic.dev/0.38.0/v/is_instance_of' | |
β } | |
] | |
""" | |
``` | |
''' | |
def __class_getitem__(cls, item: AnyType) -> AnyType: | |
return Annotated[item, cls()] | |
def __get_pydantic_core_schema__(cls, source: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema: | |
from pydantic import PydanticSchemaGenerationError | |
# use the generic _origin_ as the second argument to isinstance when appropriate | |
instance_of_schema = core_schema.is_instance_schema(_generics.get_origin(source) or source) | |
try: | |
# Try to generate the "standard" schema, which will be used when loading from JSON | |
original_schema = handler(source) | |
except PydanticSchemaGenerationError: | |
# If that fails, just produce a schema that can validate from python | |
return instance_of_schema | |
else: | |
# Use the "original" approach to serialization | |
instance_of_schema['serialization'] = core_schema.wrap_serializer_function_ser_schema( | |
function=lambda v, h: h(v), schema=original_schema | |
) | |
return core_schema.json_or_python_schema(python_schema=instance_of_schema, json_schema=original_schema) | |
__hash__ = object.__hash__ | |
if TYPE_CHECKING: | |
SkipValidation = Annotated[AnyType, ...] # SkipValidation[list[str]] will be treated by type checkers as list[str] | |
else: | |
class SkipValidation: | |
"""If this is applied as an annotation (e.g., via `x: Annotated[int, SkipValidation]`), validation will be | |
skipped. You can also use `SkipValidation[int]` as a shorthand for `Annotated[int, SkipValidation]`. | |
This can be useful if you want to use a type annotation for documentation/IDE/type-checking purposes, | |
and know that it is safe to skip validation for one or more of the fields. | |
Because this converts the validation schema to `any_schema`, subsequent annotation-applied transformations | |
may not have the expected effects. Therefore, when used, this annotation should generally be the final | |
annotation applied to a type. | |
""" | |
def __class_getitem__(cls, item: Any) -> Any: | |
return Annotated[item, SkipValidation()] | |
def __get_pydantic_core_schema__(cls, source: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema: | |
original_schema = handler(source) | |
metadata = _core_metadata.build_metadata_dict(js_annotation_functions=[lambda _c, h: h(original_schema)]) | |
return core_schema.any_schema( | |
metadata=metadata, | |
serialization=core_schema.wrap_serializer_function_ser_schema( | |
function=lambda v, h: h(v), schema=original_schema | |
), | |
) | |
__hash__ = object.__hash__ | |