peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pydantic
/json_schema.py
""" | |
Usage docs: https://docs.pydantic.dev/2.5/concepts/json_schema/ | |
The `json_schema` module contains classes and functions to allow the way [JSON Schema](https://json-schema.org/) | |
is generated to be customized. | |
In general you shouldn't need to use this module directly; instead, you can use | |
[`BaseModel.model_json_schema`][pydantic.BaseModel.model_json_schema] and | |
[`TypeAdapter.json_schema`][pydantic.TypeAdapter.json_schema]. | |
""" | |
from __future__ import annotations as _annotations | |
import dataclasses | |
import inspect | |
import math | |
import re | |
import warnings | |
from collections import defaultdict | |
from copy import deepcopy | |
from dataclasses import is_dataclass | |
from enum import Enum | |
from typing import ( | |
TYPE_CHECKING, | |
Any, | |
Callable, | |
Counter, | |
Dict, | |
Hashable, | |
Iterable, | |
NewType, | |
Sequence, | |
Tuple, | |
TypeVar, | |
Union, | |
cast, | |
) | |
import pydantic_core | |
from pydantic_core import CoreSchema, PydanticOmit, core_schema, to_jsonable_python | |
from pydantic_core.core_schema import ComputedField | |
from typing_extensions import Annotated, Literal, TypeAlias, assert_never, deprecated, final | |
from pydantic.warnings import PydanticDeprecatedSince26 | |
from ._internal import ( | |
_config, | |
_core_metadata, | |
_core_utils, | |
_decorators, | |
_internal_dataclass, | |
_mock_val_ser, | |
_schema_generation_shared, | |
_typing_extra, | |
) | |
from .annotated_handlers import GetJsonSchemaHandler | |
from .config import JsonDict, JsonSchemaExtraCallable, JsonValue | |
from .errors import PydanticInvalidForJsonSchema, PydanticSchemaGenerationError, PydanticUserError | |
if TYPE_CHECKING: | |
from . import ConfigDict | |
from ._internal._core_utils import CoreSchemaField, CoreSchemaOrField | |
from ._internal._dataclasses import PydanticDataclass | |
from ._internal._schema_generation_shared import GetJsonSchemaFunction | |
from .main import BaseModel | |
CoreSchemaOrFieldType = Literal[core_schema.CoreSchemaType, core_schema.CoreSchemaFieldType] | |
""" | |
A type alias for defined schema types that represents a union of | |
`core_schema.CoreSchemaType` and | |
`core_schema.CoreSchemaFieldType`. | |
""" | |
JsonSchemaValue = Dict[str, Any] | |
""" | |
A type alias for a JSON schema value. This is a dictionary of string keys to arbitrary JSON values. | |
""" | |
JsonSchemaMode = Literal['validation', 'serialization'] | |
""" | |
A type alias that represents the mode of a JSON schema; either 'validation' or 'serialization'. | |
For some types, the inputs to validation differ from the outputs of serialization. For example, | |
computed fields will only be present when serializing, and should not be provided when | |
validating. This flag provides a way to indicate whether you want the JSON schema required | |
for validation inputs, or that will be matched by serialization outputs. | |
""" | |
_MODE_TITLE_MAPPING: dict[JsonSchemaMode, str] = {'validation': 'Input', 'serialization': 'Output'} | |
def update_json_schema(schema: JsonSchemaValue, updates: dict[str, Any]) -> JsonSchemaValue: | |
"""Update a JSON schema in-place by providing a dictionary of updates. | |
This function sets the provided key-value pairs in the schema and returns the updated schema. | |
Args: | |
schema: The JSON schema to update. | |
updates: A dictionary of key-value pairs to set in the schema. | |
Returns: | |
The updated JSON schema. | |
""" | |
schema.update(updates) | |
return schema | |
JsonSchemaWarningKind = Literal['skipped-choice', 'non-serializable-default'] | |
""" | |
A type alias representing the kinds of warnings that can be emitted during JSON schema generation. | |
See [`GenerateJsonSchema.render_warning_message`][pydantic.json_schema.GenerateJsonSchema.render_warning_message] | |
for more details. | |
""" | |
class PydanticJsonSchemaWarning(UserWarning): | |
"""This class is used to emit warnings produced during JSON schema generation. | |
See the [`GenerateJsonSchema.emit_warning`][pydantic.json_schema.GenerateJsonSchema.emit_warning] and | |
[`GenerateJsonSchema.render_warning_message`][pydantic.json_schema.GenerateJsonSchema.render_warning_message] | |
methods for more details; these can be overridden to control warning behavior. | |
""" | |
# ##### JSON Schema Generation ##### | |
DEFAULT_REF_TEMPLATE = '#/$defs/{model}' | |
"""The default format string used to generate reference names.""" | |
# There are three types of references relevant to building JSON schemas: | |
# 1. core_schema "ref" values; these are not exposed as part of the JSON schema | |
# * these might look like the fully qualified path of a model, its id, or something similar | |
CoreRef = NewType('CoreRef', str) | |
# 2. keys of the "definitions" object that will eventually go into the JSON schema | |
# * by default, these look like "MyModel", though may change in the presence of collisions | |
# * eventually, we may want to make it easier to modify the way these names are generated | |
DefsRef = NewType('DefsRef', str) | |
# 3. the values corresponding to the "$ref" key in the schema | |
# * By default, these look like "#/$defs/MyModel", as in {"$ref": "#/$defs/MyModel"} | |
JsonRef = NewType('JsonRef', str) | |
CoreModeRef = Tuple[CoreRef, JsonSchemaMode] | |
JsonSchemaKeyT = TypeVar('JsonSchemaKeyT', bound=Hashable) | |
class _DefinitionsRemapping: | |
defs_remapping: dict[DefsRef, DefsRef] | |
json_remapping: dict[JsonRef, JsonRef] | |
def from_prioritized_choices( | |
prioritized_choices: dict[DefsRef, list[DefsRef]], | |
defs_to_json: dict[DefsRef, JsonRef], | |
definitions: dict[DefsRef, JsonSchemaValue], | |
) -> _DefinitionsRemapping: | |
""" | |
This function should produce a remapping that replaces complex DefsRef with the simpler ones from the | |
prioritized_choices such that applying the name remapping would result in an equivalent JSON schema. | |
""" | |
# We need to iteratively simplify the definitions until we reach a fixed point. | |
# The reason for this is that outer definitions may reference inner definitions that get simplified | |
# into an equivalent reference, and the outer definitions won't be equivalent until we've simplified | |
# the inner definitions. | |
copied_definitions = deepcopy(definitions) | |
definitions_schema = {'$defs': copied_definitions} | |
for _iter in range(100): # prevent an infinite loop in the case of a bug, 100 iterations should be enough | |
# For every possible remapped DefsRef, collect all schemas that that DefsRef might be used for: | |
schemas_for_alternatives: dict[DefsRef, list[JsonSchemaValue]] = defaultdict(list) | |
for defs_ref in copied_definitions: | |
alternatives = prioritized_choices[defs_ref] | |
for alternative in alternatives: | |
schemas_for_alternatives[alternative].append(copied_definitions[defs_ref]) | |
# Deduplicate the schemas for each alternative; the idea is that we only want to remap to a new DefsRef | |
# if it introduces no ambiguity, i.e., there is only one distinct schema for that DefsRef. | |
for defs_ref, schemas in schemas_for_alternatives.items(): | |
schemas_for_alternatives[defs_ref] = _deduplicate_schemas(schemas_for_alternatives[defs_ref]) | |
# Build the remapping | |
defs_remapping: dict[DefsRef, DefsRef] = {} | |
json_remapping: dict[JsonRef, JsonRef] = {} | |
for original_defs_ref in definitions: | |
alternatives = prioritized_choices[original_defs_ref] | |
# Pick the first alternative that has only one schema, since that means there is no collision | |
remapped_defs_ref = next(x for x in alternatives if len(schemas_for_alternatives[x]) == 1) | |
defs_remapping[original_defs_ref] = remapped_defs_ref | |
json_remapping[defs_to_json[original_defs_ref]] = defs_to_json[remapped_defs_ref] | |
remapping = _DefinitionsRemapping(defs_remapping, json_remapping) | |
new_definitions_schema = remapping.remap_json_schema({'$defs': copied_definitions}) | |
if definitions_schema == new_definitions_schema: | |
# We've reached the fixed point | |
return remapping | |
definitions_schema = new_definitions_schema | |
raise PydanticInvalidForJsonSchema('Failed to simplify the JSON schema definitions') | |
def remap_defs_ref(self, ref: DefsRef) -> DefsRef: | |
return self.defs_remapping.get(ref, ref) | |
def remap_json_ref(self, ref: JsonRef) -> JsonRef: | |
return self.json_remapping.get(ref, ref) | |
def remap_json_schema(self, schema: Any) -> Any: | |
""" | |
Recursively update the JSON schema replacing all $refs | |
""" | |
if isinstance(schema, str): | |
# Note: this may not really be a JsonRef; we rely on having no collisions between JsonRefs and other strings | |
return self.remap_json_ref(JsonRef(schema)) | |
elif isinstance(schema, list): | |
return [self.remap_json_schema(item) for item in schema] | |
elif isinstance(schema, dict): | |
for key, value in schema.items(): | |
if key == '$ref' and isinstance(value, str): | |
schema['$ref'] = self.remap_json_ref(JsonRef(value)) | |
elif key == '$defs': | |
schema['$defs'] = { | |
self.remap_defs_ref(DefsRef(key)): self.remap_json_schema(value) | |
for key, value in schema['$defs'].items() | |
} | |
else: | |
schema[key] = self.remap_json_schema(value) | |
return schema | |
class GenerateJsonSchema: | |
"""Usage docs: https://docs.pydantic.dev/2.7/concepts/json_schema/#customizing-the-json-schema-generation-process | |
A class for generating JSON schemas. | |
This class generates JSON schemas based on configured parameters. The default schema dialect | |
is [https://json-schema.org/draft/2020-12/schema](https://json-schema.org/draft/2020-12/schema). | |
The class uses `by_alias` to configure how fields with | |
multiple names are handled and `ref_template` to format reference names. | |
Attributes: | |
schema_dialect: The JSON schema dialect used to generate the schema. See | |
[Declaring a Dialect](https://json-schema.org/understanding-json-schema/reference/schema.html#id4) | |
in the JSON Schema documentation for more information about dialects. | |
ignored_warning_kinds: Warnings to ignore when generating the schema. `self.render_warning_message` will | |
do nothing if its argument `kind` is in `ignored_warning_kinds`; | |
this value can be modified on subclasses to easily control which warnings are emitted. | |
by_alias: Whether to use field aliases when generating the schema. | |
ref_template: The format string used when generating reference names. | |
core_to_json_refs: A mapping of core refs to JSON refs. | |
core_to_defs_refs: A mapping of core refs to definition refs. | |
defs_to_core_refs: A mapping of definition refs to core refs. | |
json_to_defs_refs: A mapping of JSON refs to definition refs. | |
definitions: Definitions in the schema. | |
Args: | |
by_alias: Whether to use field aliases in the generated schemas. | |
ref_template: The format string to use when generating reference names. | |
Raises: | |
JsonSchemaError: If the instance of the class is inadvertently re-used after generating a schema. | |
""" | |
schema_dialect = 'https://json-schema.org/draft/2020-12/schema' | |
# `self.render_warning_message` will do nothing if its argument `kind` is in `ignored_warning_kinds`; | |
# this value can be modified on subclasses to easily control which warnings are emitted | |
ignored_warning_kinds: set[JsonSchemaWarningKind] = {'skipped-choice'} | |
def __init__(self, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE): | |
self.by_alias = by_alias | |
self.ref_template = ref_template | |
self.core_to_json_refs: dict[CoreModeRef, JsonRef] = {} | |
self.core_to_defs_refs: dict[CoreModeRef, DefsRef] = {} | |
self.defs_to_core_refs: dict[DefsRef, CoreModeRef] = {} | |
self.json_to_defs_refs: dict[JsonRef, DefsRef] = {} | |
self.definitions: dict[DefsRef, JsonSchemaValue] = {} | |
self._config_wrapper_stack = _config.ConfigWrapperStack(_config.ConfigWrapper({})) | |
self._mode: JsonSchemaMode = 'validation' | |
# The following includes a mapping of a fully-unique defs ref choice to a list of preferred | |
# alternatives, which are generally simpler, such as only including the class name. | |
# At the end of schema generation, we use these to produce a JSON schema with more human-readable | |
# definitions, which would also work better in a generated OpenAPI client, etc. | |
self._prioritized_defsref_choices: dict[DefsRef, list[DefsRef]] = {} | |
self._collision_counter: dict[str, int] = defaultdict(int) | |
self._collision_index: dict[str, int] = {} | |
self._schema_type_to_method = self.build_schema_type_to_method() | |
# When we encounter definitions we need to try to build them immediately | |
# so that they are available schemas that reference them | |
# But it's possible that CoreSchema was never going to be used | |
# (e.g. because the CoreSchema that references short circuits is JSON schema generation without needing | |
# the reference) so instead of failing altogether if we can't build a definition we | |
# store the error raised and re-throw it if we end up needing that def | |
self._core_defs_invalid_for_json_schema: dict[DefsRef, PydanticInvalidForJsonSchema] = {} | |
# This changes to True after generating a schema, to prevent issues caused by accidental re-use | |
# of a single instance of a schema generator | |
self._used = False | |
def _config(self) -> _config.ConfigWrapper: | |
return self._config_wrapper_stack.tail | |
def mode(self) -> JsonSchemaMode: | |
if self._config.json_schema_mode_override is not None: | |
return self._config.json_schema_mode_override | |
else: | |
return self._mode | |
def build_schema_type_to_method( | |
self, | |
) -> dict[CoreSchemaOrFieldType, Callable[[CoreSchemaOrField], JsonSchemaValue]]: | |
"""Builds a dictionary mapping fields to methods for generating JSON schemas. | |
Returns: | |
A dictionary containing the mapping of `CoreSchemaOrFieldType` to a handler method. | |
Raises: | |
TypeError: If no method has been defined for generating a JSON schema for a given pydantic core schema type. | |
""" | |
mapping: dict[CoreSchemaOrFieldType, Callable[[CoreSchemaOrField], JsonSchemaValue]] = {} | |
core_schema_types: list[CoreSchemaOrFieldType] = _typing_extra.all_literal_values( | |
CoreSchemaOrFieldType # type: ignore | |
) | |
for key in core_schema_types: | |
method_name = f"{key.replace('-', '_')}_schema" | |
try: | |
mapping[key] = getattr(self, method_name) | |
except AttributeError as e: # pragma: no cover | |
raise TypeError( | |
f'No method for generating JsonSchema for core_schema.type={key!r} ' | |
f'(expected: {type(self).__name__}.{method_name})' | |
) from e | |
return mapping | |
def generate_definitions( | |
self, inputs: Sequence[tuple[JsonSchemaKeyT, JsonSchemaMode, core_schema.CoreSchema]] | |
) -> tuple[dict[tuple[JsonSchemaKeyT, JsonSchemaMode], JsonSchemaValue], dict[DefsRef, JsonSchemaValue]]: | |
"""Generates JSON schema definitions from a list of core schemas, pairing the generated definitions with a | |
mapping that links the input keys to the definition references. | |
Args: | |
inputs: A sequence of tuples, where: | |
- The first element is a JSON schema key type. | |
- The second element is the JSON mode: either 'validation' or 'serialization'. | |
- The third element is a core schema. | |
Returns: | |
A tuple where: | |
- The first element is a dictionary whose keys are tuples of JSON schema key type and JSON mode, and | |
whose values are the JSON schema corresponding to that pair of inputs. (These schemas may have | |
JsonRef references to definitions that are defined in the second returned element.) | |
- The second element is a dictionary whose keys are definition references for the JSON schemas | |
from the first returned element, and whose values are the actual JSON schema definitions. | |
Raises: | |
PydanticUserError: Raised if the JSON schema generator has already been used to generate a JSON schema. | |
""" | |
if self._used: | |
raise PydanticUserError( | |
'This JSON schema generator has already been used to generate a JSON schema. ' | |
f'You must create a new instance of {type(self).__name__} to generate a new JSON schema.', | |
code='json-schema-already-used', | |
) | |
for key, mode, schema in inputs: | |
self._mode = mode | |
self.generate_inner(schema) | |
definitions_remapping = self._build_definitions_remapping() | |
json_schemas_map: dict[tuple[JsonSchemaKeyT, JsonSchemaMode], DefsRef] = {} | |
for key, mode, schema in inputs: | |
self._mode = mode | |
json_schema = self.generate_inner(schema) | |
json_schemas_map[(key, mode)] = definitions_remapping.remap_json_schema(json_schema) | |
json_schema = {'$defs': self.definitions} | |
json_schema = definitions_remapping.remap_json_schema(json_schema) | |
self._used = True | |
return json_schemas_map, _sort_json_schema(json_schema['$defs']) # type: ignore | |
def generate(self, schema: CoreSchema, mode: JsonSchemaMode = 'validation') -> JsonSchemaValue: | |
"""Generates a JSON schema for a specified schema in a specified mode. | |
Args: | |
schema: A Pydantic model. | |
mode: The mode in which to generate the schema. Defaults to 'validation'. | |
Returns: | |
A JSON schema representing the specified schema. | |
Raises: | |
PydanticUserError: If the JSON schema generator has already been used to generate a JSON schema. | |
""" | |
self._mode = mode | |
if self._used: | |
raise PydanticUserError( | |
'This JSON schema generator has already been used to generate a JSON schema. ' | |
f'You must create a new instance of {type(self).__name__} to generate a new JSON schema.', | |
code='json-schema-already-used', | |
) | |
json_schema: JsonSchemaValue = self.generate_inner(schema) | |
json_ref_counts = self.get_json_ref_counts(json_schema) | |
# Remove the top-level $ref if present; note that the _generate method already ensures there are no sibling keys | |
ref = cast(JsonRef, json_schema.get('$ref')) | |
while ref is not None: # may need to unpack multiple levels | |
ref_json_schema = self.get_schema_from_definitions(ref) | |
if json_ref_counts[ref] > 1 or ref_json_schema is None: | |
# Keep the ref, but use an allOf to remove the top level $ref | |
json_schema = {'allOf': [{'$ref': ref}]} | |
else: | |
# "Unpack" the ref since this is the only reference | |
json_schema = ref_json_schema.copy() # copy to prevent recursive dict reference | |
json_ref_counts[ref] -= 1 | |
ref = cast(JsonRef, json_schema.get('$ref')) | |
self._garbage_collect_definitions(json_schema) | |
definitions_remapping = self._build_definitions_remapping() | |
if self.definitions: | |
json_schema['$defs'] = self.definitions | |
json_schema = definitions_remapping.remap_json_schema(json_schema) | |
# For now, we will not set the $schema key. However, if desired, this can be easily added by overriding | |
# this method and adding the following line after a call to super().generate(schema): | |
# json_schema['$schema'] = self.schema_dialect | |
self._used = True | |
return _sort_json_schema(json_schema) | |
def generate_inner(self, schema: CoreSchemaOrField) -> JsonSchemaValue: # noqa: C901 | |
"""Generates a JSON schema for a given core schema. | |
Args: | |
schema: The given core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
# If a schema with the same CoreRef has been handled, just return a reference to it | |
# Note that this assumes that it will _never_ be the case that the same CoreRef is used | |
# on types that should have different JSON schemas | |
if 'ref' in schema: | |
core_ref = CoreRef(schema['ref']) # type: ignore[typeddict-item] | |
core_mode_ref = (core_ref, self.mode) | |
if core_mode_ref in self.core_to_defs_refs and self.core_to_defs_refs[core_mode_ref] in self.definitions: | |
return {'$ref': self.core_to_json_refs[core_mode_ref]} | |
# Generate the JSON schema, accounting for the json_schema_override and core_schema_override | |
metadata_handler = _core_metadata.CoreMetadataHandler(schema) | |
def populate_defs(core_schema: CoreSchema, json_schema: JsonSchemaValue) -> JsonSchemaValue: | |
if 'ref' in core_schema: | |
core_ref = CoreRef(core_schema['ref']) # type: ignore[typeddict-item] | |
defs_ref, ref_json_schema = self.get_cache_defs_ref_schema(core_ref) | |
json_ref = JsonRef(ref_json_schema['$ref']) | |
self.json_to_defs_refs[json_ref] = defs_ref | |
# Replace the schema if it's not a reference to itself | |
# What we want to avoid is having the def be just a ref to itself | |
# which is what would happen if we blindly assigned any | |
if json_schema.get('$ref', None) != json_ref: | |
self.definitions[defs_ref] = json_schema | |
self._core_defs_invalid_for_json_schema.pop(defs_ref, None) | |
json_schema = ref_json_schema | |
return json_schema | |
def convert_to_all_of(json_schema: JsonSchemaValue) -> JsonSchemaValue: | |
if '$ref' in json_schema and len(json_schema.keys()) > 1: | |
# technically you can't have any other keys next to a "$ref" | |
# but it's an easy mistake to make and not hard to correct automatically here | |
json_schema = json_schema.copy() | |
ref = json_schema.pop('$ref') | |
json_schema = {'allOf': [{'$ref': ref}], **json_schema} | |
return json_schema | |
def handler_func(schema_or_field: CoreSchemaOrField) -> JsonSchemaValue: | |
"""Generate a JSON schema based on the input schema. | |
Args: | |
schema_or_field: The core schema to generate a JSON schema from. | |
Returns: | |
The generated JSON schema. | |
Raises: | |
TypeError: If an unexpected schema type is encountered. | |
""" | |
# Generate the core-schema-type-specific bits of the schema generation: | |
json_schema: JsonSchemaValue | None = None | |
if self.mode == 'serialization' and 'serialization' in schema_or_field: | |
ser_schema = schema_or_field['serialization'] # type: ignore | |
json_schema = self.ser_schema(ser_schema) | |
if json_schema is None: | |
if _core_utils.is_core_schema(schema_or_field) or _core_utils.is_core_schema_field(schema_or_field): | |
generate_for_schema_type = self._schema_type_to_method[schema_or_field['type']] | |
json_schema = generate_for_schema_type(schema_or_field) | |
else: | |
raise TypeError(f'Unexpected schema type: schema={schema_or_field}') | |
if _core_utils.is_core_schema(schema_or_field): | |
json_schema = populate_defs(schema_or_field, json_schema) | |
json_schema = convert_to_all_of(json_schema) | |
return json_schema | |
current_handler = _schema_generation_shared.GenerateJsonSchemaHandler(self, handler_func) | |
for js_modify_function in metadata_handler.metadata.get('pydantic_js_functions', ()): | |
def new_handler_func( | |
schema_or_field: CoreSchemaOrField, | |
current_handler: GetJsonSchemaHandler = current_handler, | |
js_modify_function: GetJsonSchemaFunction = js_modify_function, | |
) -> JsonSchemaValue: | |
json_schema = js_modify_function(schema_or_field, current_handler) | |
if _core_utils.is_core_schema(schema_or_field): | |
json_schema = populate_defs(schema_or_field, json_schema) | |
original_schema = current_handler.resolve_ref_schema(json_schema) | |
ref = json_schema.pop('$ref', None) | |
if ref and json_schema: | |
original_schema.update(json_schema) | |
return original_schema | |
current_handler = _schema_generation_shared.GenerateJsonSchemaHandler(self, new_handler_func) | |
for js_modify_function in metadata_handler.metadata.get('pydantic_js_annotation_functions', ()): | |
def new_handler_func( | |
schema_or_field: CoreSchemaOrField, | |
current_handler: GetJsonSchemaHandler = current_handler, | |
js_modify_function: GetJsonSchemaFunction = js_modify_function, | |
) -> JsonSchemaValue: | |
json_schema = js_modify_function(schema_or_field, current_handler) | |
if _core_utils.is_core_schema(schema_or_field): | |
json_schema = populate_defs(schema_or_field, json_schema) | |
json_schema = convert_to_all_of(json_schema) | |
return json_schema | |
current_handler = _schema_generation_shared.GenerateJsonSchemaHandler(self, new_handler_func) | |
json_schema = current_handler(schema) | |
if _core_utils.is_core_schema(schema): | |
json_schema = populate_defs(schema, json_schema) | |
json_schema = convert_to_all_of(json_schema) | |
return json_schema | |
# ### Schema generation methods | |
def any_schema(self, schema: core_schema.AnySchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches any value. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
return {} | |
def none_schema(self, schema: core_schema.NoneSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches `None`. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
return {'type': 'null'} | |
def bool_schema(self, schema: core_schema.BoolSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a bool value. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
return {'type': 'boolean'} | |
def int_schema(self, schema: core_schema.IntSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches an int value. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
json_schema: dict[str, Any] = {'type': 'integer'} | |
self.update_with_validations(json_schema, schema, self.ValidationsMapping.numeric) | |
json_schema = {k: v for k, v in json_schema.items() if v not in {math.inf, -math.inf}} | |
return json_schema | |
def float_schema(self, schema: core_schema.FloatSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a float value. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
json_schema: dict[str, Any] = {'type': 'number'} | |
self.update_with_validations(json_schema, schema, self.ValidationsMapping.numeric) | |
json_schema = {k: v for k, v in json_schema.items() if v not in {math.inf, -math.inf}} | |
return json_schema | |
def decimal_schema(self, schema: core_schema.DecimalSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a decimal value. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
json_schema = self.str_schema(core_schema.str_schema()) | |
if self.mode == 'validation': | |
multiple_of = schema.get('multiple_of') | |
le = schema.get('le') | |
ge = schema.get('ge') | |
lt = schema.get('lt') | |
gt = schema.get('gt') | |
json_schema = { | |
'anyOf': [ | |
self.float_schema( | |
core_schema.float_schema( | |
allow_inf_nan=schema.get('allow_inf_nan'), | |
multiple_of=None if multiple_of is None else float(multiple_of), | |
le=None if le is None else float(le), | |
ge=None if ge is None else float(ge), | |
lt=None if lt is None else float(lt), | |
gt=None if gt is None else float(gt), | |
) | |
), | |
json_schema, | |
], | |
} | |
return json_schema | |
def str_schema(self, schema: core_schema.StringSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a string value. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
json_schema = {'type': 'string'} | |
self.update_with_validations(json_schema, schema, self.ValidationsMapping.string) | |
return json_schema | |
def bytes_schema(self, schema: core_schema.BytesSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a bytes value. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
json_schema = {'type': 'string', 'format': 'base64url' if self._config.ser_json_bytes == 'base64' else 'binary'} | |
self.update_with_validations(json_schema, schema, self.ValidationsMapping.bytes) | |
return json_schema | |
def date_schema(self, schema: core_schema.DateSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a date value. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
json_schema = {'type': 'string', 'format': 'date'} | |
self.update_with_validations(json_schema, schema, self.ValidationsMapping.date) | |
return json_schema | |
def time_schema(self, schema: core_schema.TimeSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a time value. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
return {'type': 'string', 'format': 'time'} | |
def datetime_schema(self, schema: core_schema.DatetimeSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a datetime value. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
return {'type': 'string', 'format': 'date-time'} | |
def timedelta_schema(self, schema: core_schema.TimedeltaSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a timedelta value. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
if self._config.ser_json_timedelta == 'float': | |
return {'type': 'number'} | |
return {'type': 'string', 'format': 'duration'} | |
def literal_schema(self, schema: core_schema.LiteralSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a literal value. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
expected = [v.value if isinstance(v, Enum) else v for v in schema['expected']] | |
# jsonify the expected values | |
expected = [to_jsonable_python(v) for v in expected] | |
result: dict[str, Any] = {'enum': expected} | |
if len(expected) == 1: | |
result['const'] = expected[0] | |
types = {type(e) for e in expected} | |
if types == {str}: | |
result['type'] = 'string' | |
elif types == {int}: | |
result['type'] = 'integer' | |
elif types == {float}: | |
result['type'] = 'numeric' | |
elif types == {bool}: | |
result['type'] = 'boolean' | |
elif types == {list}: | |
result['type'] = 'array' | |
elif types == {type(None)}: | |
result['type'] = 'null' | |
return result | |
def enum_schema(self, schema: core_schema.EnumSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches an Enum value. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
enum_type = schema['cls'] | |
description = None if not enum_type.__doc__ else inspect.cleandoc(enum_type.__doc__) | |
if ( | |
description == 'An enumeration.' | |
): # This is the default value provided by enum.EnumMeta.__new__; don't use it | |
description = None | |
result: dict[str, Any] = {'title': enum_type.__name__, 'description': description} | |
result = {k: v for k, v in result.items() if v is not None} | |
expected = [to_jsonable_python(v.value) for v in schema['members']] | |
result['enum'] = expected | |
if len(expected) == 1: | |
result['const'] = expected[0] | |
types = {type(e) for e in expected} | |
if isinstance(enum_type, str) or types == {str}: | |
result['type'] = 'string' | |
elif isinstance(enum_type, int) or types == {int}: | |
result['type'] = 'integer' | |
elif isinstance(enum_type, float) or types == {float}: | |
result['type'] = 'numeric' | |
elif types == {bool}: | |
result['type'] = 'boolean' | |
elif types == {list}: | |
result['type'] = 'array' | |
return result | |
def is_instance_schema(self, schema: core_schema.IsInstanceSchema) -> JsonSchemaValue: | |
"""Handles JSON schema generation for a core schema that checks if a value is an instance of a class. | |
Unless overridden in a subclass, this raises an error. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
return self.handle_invalid_for_json_schema(schema, f'core_schema.IsInstanceSchema ({schema["cls"]})') | |
def is_subclass_schema(self, schema: core_schema.IsSubclassSchema) -> JsonSchemaValue: | |
"""Handles JSON schema generation for a core schema that checks if a value is a subclass of a class. | |
For backwards compatibility with v1, this does not raise an error, but can be overridden to change this. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
# Note: This is for compatibility with V1; you can override if you want different behavior. | |
return {} | |
def callable_schema(self, schema: core_schema.CallableSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a callable value. | |
Unless overridden in a subclass, this raises an error. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
return self.handle_invalid_for_json_schema(schema, 'core_schema.CallableSchema') | |
def list_schema(self, schema: core_schema.ListSchema) -> JsonSchemaValue: | |
"""Returns a schema that matches a list schema. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
items_schema = {} if 'items_schema' not in schema else self.generate_inner(schema['items_schema']) | |
json_schema = {'type': 'array', 'items': items_schema} | |
self.update_with_validations(json_schema, schema, self.ValidationsMapping.array) | |
return json_schema | |
def tuple_positional_schema(self, schema: core_schema.TupleSchema) -> JsonSchemaValue: | |
"""Replaced by `tuple_schema`.""" | |
warnings.warn( | |
'`tuple_positional_schema` is deprecated. Use `tuple_schema` instead.', | |
PydanticDeprecatedSince26, | |
stacklevel=2, | |
) | |
return self.tuple_schema(schema) | |
def tuple_variable_schema(self, schema: core_schema.TupleSchema) -> JsonSchemaValue: | |
"""Replaced by `tuple_schema`.""" | |
warnings.warn( | |
'`tuple_variable_schema` is deprecated. Use `tuple_schema` instead.', | |
PydanticDeprecatedSince26, | |
stacklevel=2, | |
) | |
return self.tuple_schema(schema) | |
def tuple_schema(self, schema: core_schema.TupleSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a tuple schema e.g. `Tuple[int, | |
str, bool]` or `Tuple[int, ...]`. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
json_schema: JsonSchemaValue = {'type': 'array'} | |
if 'variadic_item_index' in schema: | |
variadic_item_index = schema['variadic_item_index'] | |
if variadic_item_index > 0: | |
json_schema['minItems'] = variadic_item_index | |
json_schema['prefixItems'] = [ | |
self.generate_inner(item) for item in schema['items_schema'][:variadic_item_index] | |
] | |
if variadic_item_index + 1 == len(schema['items_schema']): | |
# if the variadic item is the last item, then represent it faithfully | |
json_schema['items'] = self.generate_inner(schema['items_schema'][variadic_item_index]) | |
else: | |
# otherwise, 'items' represents the schema for the variadic | |
# item plus the suffix, so just allow anything for simplicity | |
# for now | |
json_schema['items'] = True | |
else: | |
prefixItems = [self.generate_inner(item) for item in schema['items_schema']] | |
if prefixItems: | |
json_schema['prefixItems'] = prefixItems | |
json_schema['minItems'] = len(prefixItems) | |
json_schema['maxItems'] = len(prefixItems) | |
self.update_with_validations(json_schema, schema, self.ValidationsMapping.array) | |
return json_schema | |
def set_schema(self, schema: core_schema.SetSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a set schema. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
return self._common_set_schema(schema) | |
def frozenset_schema(self, schema: core_schema.FrozenSetSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a frozenset schema. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
return self._common_set_schema(schema) | |
def _common_set_schema(self, schema: core_schema.SetSchema | core_schema.FrozenSetSchema) -> JsonSchemaValue: | |
items_schema = {} if 'items_schema' not in schema else self.generate_inner(schema['items_schema']) | |
json_schema = {'type': 'array', 'uniqueItems': True, 'items': items_schema} | |
self.update_with_validations(json_schema, schema, self.ValidationsMapping.array) | |
return json_schema | |
def generator_schema(self, schema: core_schema.GeneratorSchema) -> JsonSchemaValue: | |
"""Returns a JSON schema that represents the provided GeneratorSchema. | |
Args: | |
schema: The schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
items_schema = {} if 'items_schema' not in schema else self.generate_inner(schema['items_schema']) | |
json_schema = {'type': 'array', 'items': items_schema} | |
self.update_with_validations(json_schema, schema, self.ValidationsMapping.array) | |
return json_schema | |
def dict_schema(self, schema: core_schema.DictSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a dict schema. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
json_schema: JsonSchemaValue = {'type': 'object'} | |
keys_schema = self.generate_inner(schema['keys_schema']).copy() if 'keys_schema' in schema else {} | |
keys_pattern = keys_schema.pop('pattern', None) | |
values_schema = self.generate_inner(schema['values_schema']).copy() if 'values_schema' in schema else {} | |
values_schema.pop('title', None) # don't give a title to the additionalProperties | |
if values_schema or keys_pattern is not None: # don't add additionalProperties if it's empty | |
if keys_pattern is None: | |
json_schema['additionalProperties'] = values_schema | |
else: | |
json_schema['patternProperties'] = {keys_pattern: values_schema} | |
self.update_with_validations(json_schema, schema, self.ValidationsMapping.object) | |
return json_schema | |
def _function_schema( | |
self, | |
schema: _core_utils.AnyFunctionSchema, | |
) -> JsonSchemaValue: | |
if _core_utils.is_function_with_inner_schema(schema): | |
# This could be wrong if the function's mode is 'before', but in practice will often be right, and when it | |
# isn't, I think it would be hard to automatically infer what the desired schema should be. | |
return self.generate_inner(schema['schema']) | |
# function-plain | |
return self.handle_invalid_for_json_schema( | |
schema, f'core_schema.PlainValidatorFunctionSchema ({schema["function"]})' | |
) | |
def function_before_schema(self, schema: core_schema.BeforeValidatorFunctionSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a function-before schema. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
return self._function_schema(schema) | |
def function_after_schema(self, schema: core_schema.AfterValidatorFunctionSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a function-after schema. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
return self._function_schema(schema) | |
def function_plain_schema(self, schema: core_schema.PlainValidatorFunctionSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a function-plain schema. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
return self._function_schema(schema) | |
def function_wrap_schema(self, schema: core_schema.WrapValidatorFunctionSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a function-wrap schema. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
return self._function_schema(schema) | |
def default_schema(self, schema: core_schema.WithDefaultSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a schema with a default value. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
json_schema = self.generate_inner(schema['schema']) | |
if 'default' not in schema: | |
return json_schema | |
default = schema['default'] | |
# Note: if you want to include the value returned by the default_factory, | |
# override this method and replace the code above with: | |
# if 'default' in schema: | |
# default = schema['default'] | |
# elif 'default_factory' in schema: | |
# default = schema['default_factory']() | |
# else: | |
# return json_schema | |
try: | |
encoded_default = self.encode_default(default) | |
except pydantic_core.PydanticSerializationError: | |
self.emit_warning( | |
'non-serializable-default', | |
f'Default value {default} is not JSON serializable; excluding default from JSON schema', | |
) | |
# Return the inner schema, as though there was no default | |
return json_schema | |
if '$ref' in json_schema: | |
# Since reference schemas do not support child keys, we wrap the reference schema in a single-case allOf: | |
return {'allOf': [json_schema], 'default': encoded_default} | |
else: | |
json_schema['default'] = encoded_default | |
return json_schema | |
def nullable_schema(self, schema: core_schema.NullableSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a schema that allows null values. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
null_schema = {'type': 'null'} | |
inner_json_schema = self.generate_inner(schema['schema']) | |
if inner_json_schema == null_schema: | |
return null_schema | |
else: | |
# Thanks to the equality check against `null_schema` above, I think 'oneOf' would also be valid here; | |
# I'll use 'anyOf' for now, but it could be changed it if it would work better with some external tooling | |
return self.get_flattened_anyof([inner_json_schema, null_schema]) | |
def union_schema(self, schema: core_schema.UnionSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a schema that allows values matching any of the given schemas. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
generated: list[JsonSchemaValue] = [] | |
choices = schema['choices'] | |
for choice in choices: | |
# choice will be a tuple if an explicit label was provided | |
choice_schema = choice[0] if isinstance(choice, tuple) else choice | |
try: | |
generated.append(self.generate_inner(choice_schema)) | |
except PydanticOmit: | |
continue | |
except PydanticInvalidForJsonSchema as exc: | |
self.emit_warning('skipped-choice', exc.message) | |
if len(generated) == 1: | |
return generated[0] | |
return self.get_flattened_anyof(generated) | |
def tagged_union_schema(self, schema: core_schema.TaggedUnionSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a schema that allows values matching any of the given schemas, where | |
the schemas are tagged with a discriminator field that indicates which schema should be used to validate | |
the value. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
generated: dict[str, JsonSchemaValue] = {} | |
for k, v in schema['choices'].items(): | |
if isinstance(k, Enum): | |
k = k.value | |
try: | |
# Use str(k) since keys must be strings for json; while not technically correct, | |
# it's the closest that can be represented in valid JSON | |
generated[str(k)] = self.generate_inner(v).copy() | |
except PydanticOmit: | |
continue | |
except PydanticInvalidForJsonSchema as exc: | |
self.emit_warning('skipped-choice', exc.message) | |
one_of_choices = _deduplicate_schemas(generated.values()) | |
json_schema: JsonSchemaValue = {'oneOf': one_of_choices} | |
# This reflects the v1 behavior; TODO: we should make it possible to exclude OpenAPI stuff from the JSON schema | |
openapi_discriminator = self._extract_discriminator(schema, one_of_choices) | |
if openapi_discriminator is not None: | |
json_schema['discriminator'] = { | |
'propertyName': openapi_discriminator, | |
'mapping': {k: v.get('$ref', v) for k, v in generated.items()}, | |
} | |
return json_schema | |
def _extract_discriminator( | |
self, schema: core_schema.TaggedUnionSchema, one_of_choices: list[JsonDict] | |
) -> str | None: | |
"""Extract a compatible OpenAPI discriminator from the schema and one_of choices that end up in the final | |
schema.""" | |
openapi_discriminator: str | None = None | |
if isinstance(schema['discriminator'], str): | |
return schema['discriminator'] | |
if isinstance(schema['discriminator'], list): | |
# If the discriminator is a single item list containing a string, that is equivalent to the string case | |
if len(schema['discriminator']) == 1 and isinstance(schema['discriminator'][0], str): | |
return schema['discriminator'][0] | |
# When an alias is used that is different from the field name, the discriminator will be a list of single | |
# str lists, one for the attribute and one for the actual alias. The logic here will work even if there is | |
# more than one possible attribute, and looks for whether a single alias choice is present as a documented | |
# property on all choices. If so, that property will be used as the OpenAPI discriminator. | |
for alias_path in schema['discriminator']: | |
if not isinstance(alias_path, list): | |
break # this means that the discriminator is not a list of alias paths | |
if len(alias_path) != 1: | |
continue # this means that the "alias" does not represent a single field | |
alias = alias_path[0] | |
if not isinstance(alias, str): | |
continue # this means that the "alias" does not represent a field | |
alias_is_present_on_all_choices = True | |
for choice in one_of_choices: | |
while '$ref' in choice: | |
assert isinstance(choice['$ref'], str) | |
choice = self.get_schema_from_definitions(JsonRef(choice['$ref'])) or {} | |
properties = choice.get('properties', {}) | |
if not isinstance(properties, dict) or alias not in properties: | |
alias_is_present_on_all_choices = False | |
break | |
if alias_is_present_on_all_choices: | |
openapi_discriminator = alias | |
break | |
return openapi_discriminator | |
def chain_schema(self, schema: core_schema.ChainSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a core_schema.ChainSchema. | |
When generating a schema for validation, we return the validation JSON schema for the first step in the chain. | |
For serialization, we return the serialization JSON schema for the last step in the chain. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
step_index = 0 if self.mode == 'validation' else -1 # use first step for validation, last for serialization | |
return self.generate_inner(schema['steps'][step_index]) | |
def lax_or_strict_schema(self, schema: core_schema.LaxOrStrictSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a schema that allows values matching either the lax schema or the | |
strict schema. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
# TODO: Need to read the default value off of model config or whatever | |
use_strict = schema.get('strict', False) # TODO: replace this default False | |
# If your JSON schema fails to generate it is probably | |
# because one of the following two branches failed. | |
if use_strict: | |
return self.generate_inner(schema['strict_schema']) | |
else: | |
return self.generate_inner(schema['lax_schema']) | |
def json_or_python_schema(self, schema: core_schema.JsonOrPythonSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a schema that allows values matching either the JSON schema or the | |
Python schema. | |
The JSON schema is used instead of the Python schema. If you want to use the Python schema, you should override | |
this method. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
return self.generate_inner(schema['json_schema']) | |
def typed_dict_schema(self, schema: core_schema.TypedDictSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a schema that defines a typed dict. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
total = schema.get('total', True) | |
named_required_fields: list[tuple[str, bool, CoreSchemaField]] = [ | |
(name, self.field_is_required(field, total), field) | |
for name, field in schema['fields'].items() | |
if self.field_is_present(field) | |
] | |
if self.mode == 'serialization': | |
named_required_fields.extend(self._name_required_computed_fields(schema.get('computed_fields', []))) | |
cls = _get_typed_dict_cls(schema) | |
config = _get_typed_dict_config(cls) | |
with self._config_wrapper_stack.push(config): | |
json_schema = self._named_required_fields_schema(named_required_fields) | |
json_schema_extra = config.get('json_schema_extra') | |
extra = schema.get('extra_behavior') | |
if extra is None: | |
extra = config.get('extra', 'ignore') | |
if cls is not None: | |
title = config.get('title') or cls.__name__ | |
json_schema = self._update_class_schema(json_schema, title, extra, cls, json_schema_extra) | |
else: | |
if extra == 'forbid': | |
json_schema['additionalProperties'] = False | |
elif extra == 'allow': | |
json_schema['additionalProperties'] = True | |
return json_schema | |
def _name_required_computed_fields( | |
computed_fields: list[ComputedField], | |
) -> list[tuple[str, bool, core_schema.ComputedField]]: | |
return [(field['property_name'], True, field) for field in computed_fields] | |
def _named_required_fields_schema( | |
self, named_required_fields: Sequence[tuple[str, bool, CoreSchemaField]] | |
) -> JsonSchemaValue: | |
properties: dict[str, JsonSchemaValue] = {} | |
required_fields: list[str] = [] | |
for name, required, field in named_required_fields: | |
if self.by_alias: | |
name = self._get_alias_name(field, name) | |
try: | |
field_json_schema = self.generate_inner(field).copy() | |
except PydanticOmit: | |
continue | |
if 'title' not in field_json_schema and self.field_title_should_be_set(field): | |
title = self.get_title_from_name(name) | |
field_json_schema['title'] = title | |
field_json_schema = self.handle_ref_overrides(field_json_schema) | |
properties[name] = field_json_schema | |
if required: | |
required_fields.append(name) | |
json_schema = {'type': 'object', 'properties': properties} | |
if required_fields: | |
json_schema['required'] = required_fields | |
return json_schema | |
def _get_alias_name(self, field: CoreSchemaField, name: str) -> str: | |
if field['type'] == 'computed-field': | |
alias: Any = field.get('alias', name) | |
elif self.mode == 'validation': | |
alias = field.get('validation_alias', name) | |
else: | |
alias = field.get('serialization_alias', name) | |
if isinstance(alias, str): | |
name = alias | |
elif isinstance(alias, list): | |
alias = cast('list[str] | str', alias) | |
for path in alias: | |
if isinstance(path, list) and len(path) == 1 and isinstance(path[0], str): | |
# Use the first valid single-item string path; the code that constructs the alias array | |
# should ensure the first such item is what belongs in the JSON schema | |
name = path[0] | |
break | |
else: | |
assert_never(alias) | |
return name | |
def typed_dict_field_schema(self, schema: core_schema.TypedDictField) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a schema that defines a typed dict field. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
return self.generate_inner(schema['schema']) | |
def dataclass_field_schema(self, schema: core_schema.DataclassField) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a schema that defines a dataclass field. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
return self.generate_inner(schema['schema']) | |
def model_field_schema(self, schema: core_schema.ModelField) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a schema that defines a model field. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
return self.generate_inner(schema['schema']) | |
def computed_field_schema(self, schema: core_schema.ComputedField) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a schema that defines a computed field. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
return self.generate_inner(schema['return_schema']) | |
def model_schema(self, schema: core_schema.ModelSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a schema that defines a model. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
# We do not use schema['model'].model_json_schema() here | |
# because it could lead to inconsistent refs handling, etc. | |
cls = cast('type[BaseModel]', schema['cls']) | |
config = cls.model_config | |
title = config.get('title') | |
with self._config_wrapper_stack.push(config): | |
json_schema = self.generate_inner(schema['schema']) | |
json_schema_extra = config.get('json_schema_extra') | |
if cls.__pydantic_root_model__: | |
root_json_schema_extra = cls.model_fields['root'].json_schema_extra | |
if json_schema_extra and root_json_schema_extra: | |
raise ValueError( | |
'"model_config[\'json_schema_extra\']" and "Field.json_schema_extra" on "RootModel.root"' | |
' field must not be set simultaneously' | |
) | |
if root_json_schema_extra: | |
json_schema_extra = root_json_schema_extra | |
json_schema = self._update_class_schema(json_schema, title, config.get('extra', None), cls, json_schema_extra) | |
return json_schema | |
def _update_class_schema( | |
self, | |
json_schema: JsonSchemaValue, | |
title: str | None, | |
extra: Literal['allow', 'ignore', 'forbid'] | None, | |
cls: type[Any], | |
json_schema_extra: JsonDict | JsonSchemaExtraCallable | None, | |
) -> JsonSchemaValue: | |
if '$ref' in json_schema: | |
schema_to_update = self.get_schema_from_definitions(JsonRef(json_schema['$ref'])) or json_schema | |
else: | |
schema_to_update = json_schema | |
if title is not None: | |
# referenced_schema['title'] = title | |
schema_to_update.setdefault('title', title) | |
if 'additionalProperties' not in schema_to_update: | |
if extra == 'allow': | |
schema_to_update['additionalProperties'] = True | |
elif extra == 'forbid': | |
schema_to_update['additionalProperties'] = False | |
if isinstance(json_schema_extra, (staticmethod, classmethod)): | |
# In older versions of python, this is necessary to ensure staticmethod/classmethods are callable | |
json_schema_extra = json_schema_extra.__get__(cls) | |
if isinstance(json_schema_extra, dict): | |
schema_to_update.update(json_schema_extra) | |
elif callable(json_schema_extra): | |
if len(inspect.signature(json_schema_extra).parameters) > 1: | |
json_schema_extra(schema_to_update, cls) # type: ignore | |
else: | |
json_schema_extra(schema_to_update) # type: ignore | |
elif json_schema_extra is not None: | |
raise ValueError( | |
f"model_config['json_schema_extra']={json_schema_extra} should be a dict, callable, or None" | |
) | |
return json_schema | |
def resolve_schema_to_update(self, json_schema: JsonSchemaValue) -> JsonSchemaValue: | |
"""Resolve a JsonSchemaValue to the non-ref schema if it is a $ref schema. | |
Args: | |
json_schema: The schema to resolve. | |
Returns: | |
The resolved schema. | |
""" | |
if '$ref' in json_schema: | |
schema_to_update = self.get_schema_from_definitions(JsonRef(json_schema['$ref'])) | |
if schema_to_update is None: | |
raise RuntimeError(f'Cannot update undefined schema for $ref={json_schema["$ref"]}') | |
return self.resolve_schema_to_update(schema_to_update) | |
else: | |
schema_to_update = json_schema | |
return schema_to_update | |
def model_fields_schema(self, schema: core_schema.ModelFieldsSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a schema that defines a model's fields. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
named_required_fields: list[tuple[str, bool, CoreSchemaField]] = [ | |
(name, self.field_is_required(field, total=True), field) | |
for name, field in schema['fields'].items() | |
if self.field_is_present(field) | |
] | |
if self.mode == 'serialization': | |
named_required_fields.extend(self._name_required_computed_fields(schema.get('computed_fields', []))) | |
json_schema = self._named_required_fields_schema(named_required_fields) | |
extras_schema = schema.get('extras_schema', None) | |
if extras_schema is not None: | |
schema_to_update = self.resolve_schema_to_update(json_schema) | |
schema_to_update['additionalProperties'] = self.generate_inner(extras_schema) | |
return json_schema | |
def field_is_present(self, field: CoreSchemaField) -> bool: | |
"""Whether the field should be included in the generated JSON schema. | |
Args: | |
field: The schema for the field itself. | |
Returns: | |
`True` if the field should be included in the generated JSON schema, `False` otherwise. | |
""" | |
if self.mode == 'serialization': | |
# If you still want to include the field in the generated JSON schema, | |
# override this method and return True | |
return not field.get('serialization_exclude') | |
elif self.mode == 'validation': | |
return True | |
else: | |
assert_never(self.mode) | |
def field_is_required( | |
self, | |
field: core_schema.ModelField | core_schema.DataclassField | core_schema.TypedDictField, | |
total: bool, | |
) -> bool: | |
"""Whether the field should be marked as required in the generated JSON schema. | |
(Note that this is irrelevant if the field is not present in the JSON schema.). | |
Args: | |
field: The schema for the field itself. | |
total: Only applies to `TypedDictField`s. | |
Indicates if the `TypedDict` this field belongs to is total, in which case any fields that don't | |
explicitly specify `required=False` are required. | |
Returns: | |
`True` if the field should be marked as required in the generated JSON schema, `False` otherwise. | |
""" | |
if self.mode == 'serialization' and self._config.json_schema_serialization_defaults_required: | |
return not field.get('serialization_exclude') | |
else: | |
if field['type'] == 'typed-dict-field': | |
return field.get('required', total) | |
else: | |
return field['schema']['type'] != 'default' | |
def dataclass_args_schema(self, schema: core_schema.DataclassArgsSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a schema that defines a dataclass's constructor arguments. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
named_required_fields: list[tuple[str, bool, CoreSchemaField]] = [ | |
(field['name'], self.field_is_required(field, total=True), field) | |
for field in schema['fields'] | |
if self.field_is_present(field) | |
] | |
if self.mode == 'serialization': | |
named_required_fields.extend(self._name_required_computed_fields(schema.get('computed_fields', []))) | |
return self._named_required_fields_schema(named_required_fields) | |
def dataclass_schema(self, schema: core_schema.DataclassSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a schema that defines a dataclass. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
cls = schema['cls'] | |
config: ConfigDict = getattr(cls, '__pydantic_config__', cast('ConfigDict', {})) | |
title = config.get('title') or cls.__name__ | |
with self._config_wrapper_stack.push(config): | |
json_schema = self.generate_inner(schema['schema']).copy() | |
json_schema_extra = config.get('json_schema_extra') | |
json_schema = self._update_class_schema(json_schema, title, config.get('extra', None), cls, json_schema_extra) | |
# Dataclass-specific handling of description | |
if is_dataclass(cls) and not hasattr(cls, '__pydantic_validator__'): | |
# vanilla dataclass; don't use cls.__doc__ as it will contain the class signature by default | |
description = None | |
else: | |
description = None if cls.__doc__ is None else inspect.cleandoc(cls.__doc__) | |
if description: | |
json_schema['description'] = description | |
return json_schema | |
def arguments_schema(self, schema: core_schema.ArgumentsSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a schema that defines a function's arguments. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
metadata = _core_metadata.CoreMetadataHandler(schema).metadata | |
prefer_positional = metadata.get('pydantic_js_prefer_positional_arguments') | |
arguments = schema['arguments_schema'] | |
kw_only_arguments = [a for a in arguments if a.get('mode') == 'keyword_only'] | |
kw_or_p_arguments = [a for a in arguments if a.get('mode') in {'positional_or_keyword', None}] | |
p_only_arguments = [a for a in arguments if a.get('mode') == 'positional_only'] | |
var_args_schema = schema.get('var_args_schema') | |
var_kwargs_schema = schema.get('var_kwargs_schema') | |
if prefer_positional: | |
positional_possible = not kw_only_arguments and not var_kwargs_schema | |
if positional_possible: | |
return self.p_arguments_schema(p_only_arguments + kw_or_p_arguments, var_args_schema) | |
keyword_possible = not p_only_arguments and not var_args_schema | |
if keyword_possible: | |
return self.kw_arguments_schema(kw_or_p_arguments + kw_only_arguments, var_kwargs_schema) | |
if not prefer_positional: | |
positional_possible = not kw_only_arguments and not var_kwargs_schema | |
if positional_possible: | |
return self.p_arguments_schema(p_only_arguments + kw_or_p_arguments, var_args_schema) | |
raise PydanticInvalidForJsonSchema( | |
'Unable to generate JSON schema for arguments validator with positional-only and keyword-only arguments' | |
) | |
def kw_arguments_schema( | |
self, arguments: list[core_schema.ArgumentsParameter], var_kwargs_schema: CoreSchema | None | |
) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a schema that defines a function's keyword arguments. | |
Args: | |
arguments: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
properties: dict[str, JsonSchemaValue] = {} | |
required: list[str] = [] | |
for argument in arguments: | |
name = self.get_argument_name(argument) | |
argument_schema = self.generate_inner(argument['schema']).copy() | |
argument_schema['title'] = self.get_title_from_name(name) | |
properties[name] = argument_schema | |
if argument['schema']['type'] != 'default': | |
# This assumes that if the argument has a default value, | |
# the inner schema must be of type WithDefaultSchema. | |
# I believe this is true, but I am not 100% sure | |
required.append(name) | |
json_schema: JsonSchemaValue = {'type': 'object', 'properties': properties} | |
if required: | |
json_schema['required'] = required | |
if var_kwargs_schema: | |
additional_properties_schema = self.generate_inner(var_kwargs_schema) | |
if additional_properties_schema: | |
json_schema['additionalProperties'] = additional_properties_schema | |
else: | |
json_schema['additionalProperties'] = False | |
return json_schema | |
def p_arguments_schema( | |
self, arguments: list[core_schema.ArgumentsParameter], var_args_schema: CoreSchema | None | |
) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a schema that defines a function's positional arguments. | |
Args: | |
arguments: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
prefix_items: list[JsonSchemaValue] = [] | |
min_items = 0 | |
for argument in arguments: | |
name = self.get_argument_name(argument) | |
argument_schema = self.generate_inner(argument['schema']).copy() | |
argument_schema['title'] = self.get_title_from_name(name) | |
prefix_items.append(argument_schema) | |
if argument['schema']['type'] != 'default': | |
# This assumes that if the argument has a default value, | |
# the inner schema must be of type WithDefaultSchema. | |
# I believe this is true, but I am not 100% sure | |
min_items += 1 | |
json_schema: JsonSchemaValue = {'type': 'array', 'prefixItems': prefix_items} | |
if min_items: | |
json_schema['minItems'] = min_items | |
if var_args_schema: | |
items_schema = self.generate_inner(var_args_schema) | |
if items_schema: | |
json_schema['items'] = items_schema | |
else: | |
json_schema['maxItems'] = len(prefix_items) | |
return json_schema | |
def get_argument_name(self, argument: core_schema.ArgumentsParameter) -> str: | |
"""Retrieves the name of an argument. | |
Args: | |
argument: The core schema. | |
Returns: | |
The name of the argument. | |
""" | |
name = argument['name'] | |
if self.by_alias: | |
alias = argument.get('alias') | |
if isinstance(alias, str): | |
name = alias | |
else: | |
pass # might want to do something else? | |
return name | |
def call_schema(self, schema: core_schema.CallSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a schema that defines a function call. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
return self.generate_inner(schema['arguments_schema']) | |
def custom_error_schema(self, schema: core_schema.CustomErrorSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a schema that defines a custom error. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
return self.generate_inner(schema['schema']) | |
def json_schema(self, schema: core_schema.JsonSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a schema that defines a JSON object. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
content_core_schema = schema.get('schema') or core_schema.any_schema() | |
content_json_schema = self.generate_inner(content_core_schema) | |
if self.mode == 'validation': | |
return {'type': 'string', 'contentMediaType': 'application/json', 'contentSchema': content_json_schema} | |
else: | |
# self.mode == 'serialization' | |
return content_json_schema | |
def url_schema(self, schema: core_schema.UrlSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a schema that defines a URL. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
json_schema = {'type': 'string', 'format': 'uri', 'minLength': 1} | |
self.update_with_validations(json_schema, schema, self.ValidationsMapping.string) | |
return json_schema | |
def multi_host_url_schema(self, schema: core_schema.MultiHostUrlSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a schema that defines a URL that can be used with multiple hosts. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
# Note: 'multi-host-uri' is a custom/pydantic-specific format, not part of the JSON Schema spec | |
json_schema = {'type': 'string', 'format': 'multi-host-uri', 'minLength': 1} | |
self.update_with_validations(json_schema, schema, self.ValidationsMapping.string) | |
return json_schema | |
def uuid_schema(self, schema: core_schema.UuidSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a UUID. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
return {'type': 'string', 'format': 'uuid'} | |
def definitions_schema(self, schema: core_schema.DefinitionsSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a schema that defines a JSON object with definitions. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
for definition in schema['definitions']: | |
try: | |
self.generate_inner(definition) | |
except PydanticInvalidForJsonSchema as e: | |
core_ref: CoreRef = CoreRef(definition['ref']) # type: ignore | |
self._core_defs_invalid_for_json_schema[self.get_defs_ref((core_ref, self.mode))] = e | |
continue | |
return self.generate_inner(schema['schema']) | |
def definition_ref_schema(self, schema: core_schema.DefinitionReferenceSchema) -> JsonSchemaValue: | |
"""Generates a JSON schema that matches a schema that references a definition. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
core_ref = CoreRef(schema['schema_ref']) | |
_, ref_json_schema = self.get_cache_defs_ref_schema(core_ref) | |
return ref_json_schema | |
def ser_schema( | |
self, schema: core_schema.SerSchema | core_schema.IncExSeqSerSchema | core_schema.IncExDictSerSchema | |
) -> JsonSchemaValue | None: | |
"""Generates a JSON schema that matches a schema that defines a serialized object. | |
Args: | |
schema: The core schema. | |
Returns: | |
The generated JSON schema. | |
""" | |
schema_type = schema['type'] | |
if schema_type == 'function-plain' or schema_type == 'function-wrap': | |
# PlainSerializerFunctionSerSchema or WrapSerializerFunctionSerSchema | |
return_schema = schema.get('return_schema') | |
if return_schema is not None: | |
return self.generate_inner(return_schema) | |
elif schema_type == 'format' or schema_type == 'to-string': | |
# FormatSerSchema or ToStringSerSchema | |
return self.str_schema(core_schema.str_schema()) | |
elif schema['type'] == 'model': | |
# ModelSerSchema | |
return self.generate_inner(schema['schema']) | |
return None | |
# ### Utility methods | |
def get_title_from_name(self, name: str) -> str: | |
"""Retrieves a title from a name. | |
Args: | |
name: The name to retrieve a title from. | |
Returns: | |
The title. | |
""" | |
return name.title().replace('_', ' ') | |
def field_title_should_be_set(self, schema: CoreSchemaOrField) -> bool: | |
"""Returns true if a field with the given schema should have a title set based on the field name. | |
Intuitively, we want this to return true for schemas that wouldn't otherwise provide their own title | |
(e.g., int, float, str), and false for those that would (e.g., BaseModel subclasses). | |
Args: | |
schema: The schema to check. | |
Returns: | |
`True` if the field should have a title set, `False` otherwise. | |
""" | |
if _core_utils.is_core_schema_field(schema): | |
if schema['type'] == 'computed-field': | |
field_schema = schema['return_schema'] | |
else: | |
field_schema = schema['schema'] | |
return self.field_title_should_be_set(field_schema) | |
elif _core_utils.is_core_schema(schema): | |
if schema.get('ref'): # things with refs, such as models and enums, should not have titles set | |
return False | |
if schema['type'] in {'default', 'nullable', 'definitions'}: | |
return self.field_title_should_be_set(schema['schema']) # type: ignore[typeddict-item] | |
if _core_utils.is_function_with_inner_schema(schema): | |
return self.field_title_should_be_set(schema['schema']) | |
if schema['type'] == 'definition-ref': | |
# Referenced schemas should not have titles set for the same reason | |
# schemas with refs should not | |
return False | |
return True # anything else should have title set | |
else: | |
raise PydanticInvalidForJsonSchema(f'Unexpected schema type: schema={schema}') # pragma: no cover | |
def normalize_name(self, name: str) -> str: | |
"""Normalizes a name to be used as a key in a dictionary. | |
Args: | |
name: The name to normalize. | |
Returns: | |
The normalized name. | |
""" | |
return re.sub(r'[^a-zA-Z0-9.\-_]', '_', name).replace('.', '__') | |
def get_defs_ref(self, core_mode_ref: CoreModeRef) -> DefsRef: | |
"""Override this method to change the way that definitions keys are generated from a core reference. | |
Args: | |
core_mode_ref: The core reference. | |
Returns: | |
The definitions key. | |
""" | |
# Split the core ref into "components"; generic origins and arguments are each separate components | |
core_ref, mode = core_mode_ref | |
components = re.split(r'([\][,])', core_ref) | |
# Remove IDs from each component | |
components = [x.rsplit(':', 1)[0] for x in components] | |
core_ref_no_id = ''.join(components) | |
# Remove everything before the last period from each "component" | |
components = [re.sub(r'(?:[^.[\]]+\.)+((?:[^.[\]]+))', r'\1', x) for x in components] | |
short_ref = ''.join(components) | |
mode_title = _MODE_TITLE_MAPPING[mode] | |
# It is important that the generated defs_ref values be such that at least one choice will not | |
# be generated for any other core_ref. Currently, this should be the case because we include | |
# the id of the source type in the core_ref | |
name = DefsRef(self.normalize_name(short_ref)) | |
name_mode = DefsRef(self.normalize_name(short_ref) + f'-{mode_title}') | |
module_qualname = DefsRef(self.normalize_name(core_ref_no_id)) | |
module_qualname_mode = DefsRef(f'{module_qualname}-{mode_title}') | |
module_qualname_id = DefsRef(self.normalize_name(core_ref)) | |
occurrence_index = self._collision_index.get(module_qualname_id) | |
if occurrence_index is None: | |
self._collision_counter[module_qualname] += 1 | |
occurrence_index = self._collision_index[module_qualname_id] = self._collision_counter[module_qualname] | |
module_qualname_occurrence = DefsRef(f'{module_qualname}__{occurrence_index}') | |
module_qualname_occurrence_mode = DefsRef(f'{module_qualname_mode}__{occurrence_index}') | |
self._prioritized_defsref_choices[module_qualname_occurrence_mode] = [ | |
name, | |
name_mode, | |
module_qualname, | |
module_qualname_mode, | |
module_qualname_occurrence, | |
module_qualname_occurrence_mode, | |
] | |
return module_qualname_occurrence_mode | |
def get_cache_defs_ref_schema(self, core_ref: CoreRef) -> tuple[DefsRef, JsonSchemaValue]: | |
"""This method wraps the get_defs_ref method with some cache-lookup/population logic, | |
and returns both the produced defs_ref and the JSON schema that will refer to the right definition. | |
Args: | |
core_ref: The core reference to get the definitions reference for. | |
Returns: | |
A tuple of the definitions reference and the JSON schema that will refer to it. | |
""" | |
core_mode_ref = (core_ref, self.mode) | |
maybe_defs_ref = self.core_to_defs_refs.get(core_mode_ref) | |
if maybe_defs_ref is not None: | |
json_ref = self.core_to_json_refs[core_mode_ref] | |
return maybe_defs_ref, {'$ref': json_ref} | |
defs_ref = self.get_defs_ref(core_mode_ref) | |
# populate the ref translation mappings | |
self.core_to_defs_refs[core_mode_ref] = defs_ref | |
self.defs_to_core_refs[defs_ref] = core_mode_ref | |
json_ref = JsonRef(self.ref_template.format(model=defs_ref)) | |
self.core_to_json_refs[core_mode_ref] = json_ref | |
self.json_to_defs_refs[json_ref] = defs_ref | |
ref_json_schema = {'$ref': json_ref} | |
return defs_ref, ref_json_schema | |
def handle_ref_overrides(self, json_schema: JsonSchemaValue) -> JsonSchemaValue: | |
"""It is not valid for a schema with a top-level $ref to have sibling keys. | |
During our own schema generation, we treat sibling keys as overrides to the referenced schema, | |
but this is not how the official JSON schema spec works. | |
Because of this, we first remove any sibling keys that are redundant with the referenced schema, then if | |
any remain, we transform the schema from a top-level '$ref' to use allOf to move the $ref out of the top level. | |
(See bottom of https://swagger.io/docs/specification/using-ref/ for a reference about this behavior) | |
""" | |
if '$ref' in json_schema: | |
# prevent modifications to the input; this copy may be safe to drop if there is significant overhead | |
json_schema = json_schema.copy() | |
referenced_json_schema = self.get_schema_from_definitions(JsonRef(json_schema['$ref'])) | |
if referenced_json_schema is None: | |
# This can happen when building schemas for models with not-yet-defined references. | |
# It may be a good idea to do a recursive pass at the end of the generation to remove | |
# any redundant override keys. | |
if len(json_schema) > 1: | |
# Make it an allOf to at least resolve the sibling keys issue | |
json_schema = json_schema.copy() | |
json_schema.setdefault('allOf', []) | |
json_schema['allOf'].append({'$ref': json_schema['$ref']}) | |
del json_schema['$ref'] | |
return json_schema | |
for k, v in list(json_schema.items()): | |
if k == '$ref': | |
continue | |
if k in referenced_json_schema and referenced_json_schema[k] == v: | |
del json_schema[k] # redundant key | |
if len(json_schema) > 1: | |
# There is a remaining "override" key, so we need to move $ref out of the top level | |
json_ref = JsonRef(json_schema['$ref']) | |
del json_schema['$ref'] | |
assert 'allOf' not in json_schema # this should never happen, but just in case | |
json_schema['allOf'] = [{'$ref': json_ref}] | |
return json_schema | |
def get_schema_from_definitions(self, json_ref: JsonRef) -> JsonSchemaValue | None: | |
def_ref = self.json_to_defs_refs[json_ref] | |
if def_ref in self._core_defs_invalid_for_json_schema: | |
raise self._core_defs_invalid_for_json_schema[def_ref] | |
return self.definitions.get(def_ref, None) | |
def encode_default(self, dft: Any) -> Any: | |
"""Encode a default value to a JSON-serializable value. | |
This is used to encode default values for fields in the generated JSON schema. | |
Args: | |
dft: The default value to encode. | |
Returns: | |
The encoded default value. | |
""" | |
from .type_adapter import TypeAdapter, _type_has_config | |
config = self._config | |
try: | |
default = ( | |
dft | |
if _type_has_config(type(dft)) | |
else TypeAdapter(type(dft), config=config.config_dict).dump_python(dft, mode='json') | |
) | |
except PydanticSchemaGenerationError: | |
raise pydantic_core.PydanticSerializationError(f'Unable to encode default value {dft}') | |
return pydantic_core.to_jsonable_python( | |
default, | |
timedelta_mode=config.ser_json_timedelta, | |
bytes_mode=config.ser_json_bytes, | |
) | |
def update_with_validations( | |
self, json_schema: JsonSchemaValue, core_schema: CoreSchema, mapping: dict[str, str] | |
) -> None: | |
"""Update the json_schema with the corresponding validations specified in the core_schema, | |
using the provided mapping to translate keys in core_schema to the appropriate keys for a JSON schema. | |
Args: | |
json_schema: The JSON schema to update. | |
core_schema: The core schema to get the validations from. | |
mapping: A mapping from core_schema attribute names to the corresponding JSON schema attribute names. | |
""" | |
for core_key, json_schema_key in mapping.items(): | |
if core_key in core_schema: | |
json_schema[json_schema_key] = core_schema[core_key] | |
class ValidationsMapping: | |
"""This class just contains mappings from core_schema attribute names to the corresponding | |
JSON schema attribute names. While I suspect it is unlikely to be necessary, you can in | |
principle override this class in a subclass of GenerateJsonSchema (by inheriting from | |
GenerateJsonSchema.ValidationsMapping) to change these mappings. | |
""" | |
numeric = { | |
'multiple_of': 'multipleOf', | |
'le': 'maximum', | |
'ge': 'minimum', | |
'lt': 'exclusiveMaximum', | |
'gt': 'exclusiveMinimum', | |
} | |
bytes = { | |
'min_length': 'minLength', | |
'max_length': 'maxLength', | |
} | |
string = { | |
'min_length': 'minLength', | |
'max_length': 'maxLength', | |
'pattern': 'pattern', | |
} | |
array = { | |
'min_length': 'minItems', | |
'max_length': 'maxItems', | |
} | |
object = { | |
'min_length': 'minProperties', | |
'max_length': 'maxProperties', | |
} | |
date = { | |
'le': 'maximum', | |
'ge': 'minimum', | |
'lt': 'exclusiveMaximum', | |
'gt': 'exclusiveMinimum', | |
} | |
def get_flattened_anyof(self, schemas: list[JsonSchemaValue]) -> JsonSchemaValue: | |
members = [] | |
for schema in schemas: | |
if len(schema) == 1 and 'anyOf' in schema: | |
members.extend(schema['anyOf']) | |
else: | |
members.append(schema) | |
members = _deduplicate_schemas(members) | |
if len(members) == 1: | |
return members[0] | |
return {'anyOf': members} | |
def get_json_ref_counts(self, json_schema: JsonSchemaValue) -> dict[JsonRef, int]: | |
"""Get all values corresponding to the key '$ref' anywhere in the json_schema.""" | |
json_refs: dict[JsonRef, int] = Counter() | |
def _add_json_refs(schema: Any) -> None: | |
if isinstance(schema, dict): | |
if '$ref' in schema: | |
json_ref = JsonRef(schema['$ref']) | |
if not isinstance(json_ref, str): | |
return # in this case, '$ref' might have been the name of a property | |
already_visited = json_ref in json_refs | |
json_refs[json_ref] += 1 | |
if already_visited: | |
return # prevent recursion on a definition that was already visited | |
defs_ref = self.json_to_defs_refs[json_ref] | |
if defs_ref in self._core_defs_invalid_for_json_schema: | |
raise self._core_defs_invalid_for_json_schema[defs_ref] | |
_add_json_refs(self.definitions[defs_ref]) | |
for v in schema.values(): | |
_add_json_refs(v) | |
elif isinstance(schema, list): | |
for v in schema: | |
_add_json_refs(v) | |
_add_json_refs(json_schema) | |
return json_refs | |
def handle_invalid_for_json_schema(self, schema: CoreSchemaOrField, error_info: str) -> JsonSchemaValue: | |
raise PydanticInvalidForJsonSchema(f'Cannot generate a JsonSchema for {error_info}') | |
def emit_warning(self, kind: JsonSchemaWarningKind, detail: str) -> None: | |
"""This method simply emits PydanticJsonSchemaWarnings based on handling in the `warning_message` method.""" | |
message = self.render_warning_message(kind, detail) | |
if message is not None: | |
warnings.warn(message, PydanticJsonSchemaWarning) | |
def render_warning_message(self, kind: JsonSchemaWarningKind, detail: str) -> str | None: | |
"""This method is responsible for ignoring warnings as desired, and for formatting the warning messages. | |
You can override the value of `ignored_warning_kinds` in a subclass of GenerateJsonSchema | |
to modify what warnings are generated. If you want more control, you can override this method; | |
just return None in situations where you don't want warnings to be emitted. | |
Args: | |
kind: The kind of warning to render. It can be one of the following: | |
- 'skipped-choice': A choice field was skipped because it had no valid choices. | |
- 'non-serializable-default': A default value was skipped because it was not JSON-serializable. | |
detail: A string with additional details about the warning. | |
Returns: | |
The formatted warning message, or `None` if no warning should be emitted. | |
""" | |
if kind in self.ignored_warning_kinds: | |
return None | |
return f'{detail} [{kind}]' | |
def _build_definitions_remapping(self) -> _DefinitionsRemapping: | |
defs_to_json: dict[DefsRef, JsonRef] = {} | |
for defs_refs in self._prioritized_defsref_choices.values(): | |
for defs_ref in defs_refs: | |
json_ref = JsonRef(self.ref_template.format(model=defs_ref)) | |
defs_to_json[defs_ref] = json_ref | |
return _DefinitionsRemapping.from_prioritized_choices( | |
self._prioritized_defsref_choices, defs_to_json, self.definitions | |
) | |
def _garbage_collect_definitions(self, schema: JsonSchemaValue) -> None: | |
visited_defs_refs: set[DefsRef] = set() | |
unvisited_json_refs = _get_all_json_refs(schema) | |
while unvisited_json_refs: | |
next_json_ref = unvisited_json_refs.pop() | |
next_defs_ref = self.json_to_defs_refs[next_json_ref] | |
if next_defs_ref in visited_defs_refs: | |
continue | |
visited_defs_refs.add(next_defs_ref) | |
unvisited_json_refs.update(_get_all_json_refs(self.definitions[next_defs_ref])) | |
self.definitions = {k: v for k, v in self.definitions.items() if k in visited_defs_refs} | |
# ##### Start JSON Schema Generation Functions ##### | |
def model_json_schema( | |
cls: type[BaseModel] | type[PydanticDataclass], | |
by_alias: bool = True, | |
ref_template: str = DEFAULT_REF_TEMPLATE, | |
schema_generator: type[GenerateJsonSchema] = GenerateJsonSchema, | |
mode: JsonSchemaMode = 'validation', | |
) -> dict[str, Any]: | |
"""Utility function to generate a JSON Schema for a model. | |
Args: | |
cls: The model class to generate a JSON Schema for. | |
by_alias: If `True` (the default), fields will be serialized according to their alias. | |
If `False`, fields will be serialized according to their attribute name. | |
ref_template: The template to use for generating JSON Schema references. | |
schema_generator: The class to use for generating the JSON Schema. | |
mode: The mode to use for generating the JSON Schema. It can be one of the following: | |
- 'validation': Generate a JSON Schema for validating data. | |
- 'serialization': Generate a JSON Schema for serializing data. | |
Returns: | |
The generated JSON Schema. | |
""" | |
from .main import BaseModel | |
schema_generator_instance = schema_generator(by_alias=by_alias, ref_template=ref_template) | |
if isinstance(cls.__pydantic_validator__, _mock_val_ser.MockValSer): | |
cls.__pydantic_validator__.rebuild() | |
if cls is BaseModel: | |
raise AttributeError('model_json_schema() must be called on a subclass of BaseModel, not BaseModel itself.') | |
assert '__pydantic_core_schema__' in cls.__dict__, 'this is a bug! please report it' | |
return schema_generator_instance.generate(cls.__pydantic_core_schema__, mode=mode) | |
def models_json_schema( | |
models: Sequence[tuple[type[BaseModel] | type[PydanticDataclass], JsonSchemaMode]], | |
*, | |
by_alias: bool = True, | |
title: str | None = None, | |
description: str | None = None, | |
ref_template: str = DEFAULT_REF_TEMPLATE, | |
schema_generator: type[GenerateJsonSchema] = GenerateJsonSchema, | |
) -> tuple[dict[tuple[type[BaseModel] | type[PydanticDataclass], JsonSchemaMode], JsonSchemaValue], JsonSchemaValue]: | |
"""Utility function to generate a JSON Schema for multiple models. | |
Args: | |
models: A sequence of tuples of the form (model, mode). | |
by_alias: Whether field aliases should be used as keys in the generated JSON Schema. | |
title: The title of the generated JSON Schema. | |
description: The description of the generated JSON Schema. | |
ref_template: The reference template to use for generating JSON Schema references. | |
schema_generator: The schema generator to use for generating the JSON Schema. | |
Returns: | |
A tuple where: | |
- The first element is a dictionary whose keys are tuples of JSON schema key type and JSON mode, and | |
whose values are the JSON schema corresponding to that pair of inputs. (These schemas may have | |
JsonRef references to definitions that are defined in the second returned element.) | |
- The second element is a JSON schema containing all definitions referenced in the first returned | |
element, along with the optional title and description keys. | |
""" | |
for cls, _ in models: | |
if isinstance(cls.__pydantic_validator__, _mock_val_ser.MockValSer): | |
cls.__pydantic_validator__.rebuild() | |
instance = schema_generator(by_alias=by_alias, ref_template=ref_template) | |
inputs = [(m, mode, m.__pydantic_core_schema__) for m, mode in models] | |
json_schemas_map, definitions = instance.generate_definitions(inputs) | |
json_schema: dict[str, Any] = {} | |
if definitions: | |
json_schema['$defs'] = definitions | |
if title: | |
json_schema['title'] = title | |
if description: | |
json_schema['description'] = description | |
return json_schemas_map, json_schema | |
# ##### End JSON Schema Generation Functions ##### | |
_HashableJsonValue: TypeAlias = Union[ | |
int, float, str, bool, None, Tuple['_HashableJsonValue', ...], Tuple[Tuple[str, '_HashableJsonValue'], ...] | |
] | |
def _deduplicate_schemas(schemas: Iterable[JsonDict]) -> list[JsonDict]: | |
return list({_make_json_hashable(schema): schema for schema in schemas}.values()) | |
def _make_json_hashable(value: JsonValue) -> _HashableJsonValue: | |
if isinstance(value, dict): | |
return tuple(sorted((k, _make_json_hashable(v)) for k, v in value.items())) | |
elif isinstance(value, list): | |
return tuple(_make_json_hashable(v) for v in value) | |
else: | |
return value | |
def _sort_json_schema(value: JsonSchemaValue, parent_key: str | None = None) -> JsonSchemaValue: | |
if isinstance(value, dict): | |
sorted_dict: dict[str, JsonSchemaValue] = {} | |
keys = value.keys() | |
if (parent_key != 'properties') and (parent_key != 'default'): | |
keys = sorted(keys) | |
for key in keys: | |
sorted_dict[key] = _sort_json_schema(value[key], parent_key=key) | |
return sorted_dict | |
elif isinstance(value, list): | |
sorted_list: list[JsonSchemaValue] = [] | |
for item in value: # type: ignore | |
sorted_list.append(_sort_json_schema(item, parent_key)) | |
return sorted_list # type: ignore | |
else: | |
return value | |
class WithJsonSchema: | |
"""Usage docs: https://docs.pydantic.dev/2.7/concepts/json_schema/#withjsonschema-annotation | |
Add this as an annotation on a field to override the (base) JSON schema that would be generated for that field. | |
This provides a way to set a JSON schema for types that would otherwise raise errors when producing a JSON schema, | |
such as Callable, or types that have an is-instance core schema, without needing to go so far as creating a | |
custom subclass of pydantic.json_schema.GenerateJsonSchema. | |
Note that any _modifications_ to the schema that would normally be made (such as setting the title for model fields) | |
will still be performed. | |
If `mode` is set this will only apply to that schema generation mode, allowing you | |
to set different json schemas for validation and serialization. | |
""" | |
json_schema: JsonSchemaValue | None | |
mode: Literal['validation', 'serialization'] | None = None | |
def __get_pydantic_json_schema__( | |
self, core_schema: core_schema.CoreSchema, handler: GetJsonSchemaHandler | |
) -> JsonSchemaValue: | |
mode = self.mode or handler.mode | |
if mode != handler.mode: | |
return handler(core_schema) | |
if self.json_schema is None: | |
# This exception is handled in pydantic.json_schema.GenerateJsonSchema._named_required_fields_schema | |
raise PydanticOmit | |
else: | |
return self.json_schema | |
def __hash__(self) -> int: | |
return hash(type(self.mode)) | |
class Examples: | |
"""Add examples to a JSON schema. | |
Examples should be a map of example names (strings) | |
to example values (any valid JSON). | |
If `mode` is set this will only apply to that schema generation mode, | |
allowing you to add different examples for validation and serialization. | |
""" | |
examples: dict[str, Any] | |
mode: Literal['validation', 'serialization'] | None = None | |
def __get_pydantic_json_schema__( | |
self, core_schema: core_schema.CoreSchema, handler: GetJsonSchemaHandler | |
) -> JsonSchemaValue: | |
mode = self.mode or handler.mode | |
json_schema = handler(core_schema) | |
if mode != handler.mode: | |
return json_schema | |
examples = json_schema.get('examples', {}) | |
examples.update(to_jsonable_python(self.examples)) | |
json_schema['examples'] = examples | |
return json_schema | |
def __hash__(self) -> int: | |
return hash(type(self.mode)) | |
def _get_all_json_refs(item: Any) -> set[JsonRef]: | |
"""Get all the definitions references from a JSON schema.""" | |
refs: set[JsonRef] = set() | |
if isinstance(item, dict): | |
for key, value in item.items(): | |
if key == '$ref' and isinstance(value, str): | |
# the isinstance check ensures that '$ref' isn't the name of a property, etc. | |
refs.add(JsonRef(value)) | |
elif isinstance(value, dict): | |
refs.update(_get_all_json_refs(value)) | |
elif isinstance(value, list): | |
for item in value: | |
refs.update(_get_all_json_refs(item)) | |
elif isinstance(item, list): | |
for item in item: | |
refs.update(_get_all_json_refs(item)) | |
return refs | |
AnyType = TypeVar('AnyType') | |
if TYPE_CHECKING: | |
SkipJsonSchema = Annotated[AnyType, ...] | |
else: | |
class SkipJsonSchema: | |
"""Usage docs: https://docs.pydantic.dev/2.7/concepts/json_schema/#skipjsonschema-annotation | |
Add this as an annotation on a field to skip generating a JSON schema for that field. | |
Example: | |
```py | |
from typing import Union | |
from pydantic import BaseModel | |
from pydantic.json_schema import SkipJsonSchema | |
from pprint import pprint | |
class Model(BaseModel): | |
a: Union[int, None] = None # (1)! | |
b: Union[int, SkipJsonSchema[None]] = None # (2)! | |
c: SkipJsonSchema[Union[int, None]] = None # (3)! | |
pprint(Model.model_json_schema()) | |
''' | |
{ | |
'properties': { | |
'a': { | |
'anyOf': [ | |
{'type': 'integer'}, | |
{'type': 'null'} | |
], | |
'default': None, | |
'title': 'A' | |
}, | |
'b': { | |
'default': None, | |
'title': 'B', | |
'type': 'integer' | |
} | |
}, | |
'title': 'Model', | |
'type': 'object' | |
} | |
''' | |
``` | |
1. The integer and null types are both included in the schema for `a`. | |
2. The integer type is the only type included in the schema for `b`. | |
3. The entirety of the `c` field is omitted from the schema. | |
""" | |
def __class_getitem__(cls, item: AnyType) -> AnyType: | |
return Annotated[item, cls()] | |
def __get_pydantic_json_schema__( | |
self, core_schema: CoreSchema, handler: GetJsonSchemaHandler | |
) -> JsonSchemaValue: | |
raise PydanticOmit | |
def __hash__(self) -> int: | |
return hash(type(self)) | |
def _get_typed_dict_cls(schema: core_schema.TypedDictSchema) -> type[Any] | None: | |
metadata = _core_metadata.CoreMetadataHandler(schema).metadata | |
cls = metadata.get('pydantic_typed_dict_cls') | |
return cls | |
def _get_typed_dict_config(cls: type[Any] | None) -> ConfigDict: | |
if cls is not None: | |
try: | |
return _decorators.get_attribute_from_bases(cls, '__pydantic_config__') | |
except AttributeError: | |
pass | |
return {} | |