peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/runtime
/pipe
/module.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import os | |
import glob | |
import re as regex | |
from functools import partial | |
import torch | |
import torch.nn as nn | |
from deepspeed import comm as dist | |
from deepspeed.utils import logger | |
from .. import utils as ds_utils | |
from ..activation_checkpointing import checkpointing | |
from .topology import PipeDataParallelTopology, PipelineParallelGrid | |
from deepspeed.runtime.state_dict_factory import SDLoaderFactory | |
from deepspeed.accelerator import get_accelerator | |
from deepspeed.checkpoint.utils import clone_tensors_for_torch_save | |
class PipelineError(Exception): | |
"""Errors related to the use of deepspeed.PipelineModule """ | |
class LayerSpec: | |
"""Building block for specifying pipeline-parallel modules. | |
LayerSpec stores the type information and parameters for each stage in a | |
PipelineModule. For example: | |
.. code-block:: python | |
nn.Sequence( | |
torch.nn.Linear(self.in_dim, self.hidden_dim, bias=False), | |
torch.nn.Linear(self.hidden_hidden, self.out_dim) | |
) | |
becomes | |
.. code-block:: python | |
layer_specs = [ | |
LayerSpec(torch.nn.Linear, self.in_dim, self.hidden_dim, bias=False), | |
LayerSpec(torch.nn.Linear, self.hidden_hidden, self.out_dim)] | |
] | |
""" | |
def __init__(self, typename, *module_args, **module_kwargs): | |
self.typename = typename | |
self.module_args = module_args | |
self.module_kwargs = module_kwargs | |
if not issubclass(typename, nn.Module): | |
raise RuntimeError('LayerSpec only supports torch.nn.Module types.') | |
if dist.is_initialized(): | |
self.global_rank = dist.get_rank() | |
else: | |
self.global_rank = -1 | |
def __repr__(self): | |
return ds_utils.call_to_str(self.typename.__name__, self.module_args, self.module_kwargs) | |
def build(self, log=False): | |
"""Build the stored specification.""" | |
if log: | |
logger.info(f'RANK={self.global_rank} building {repr(self)}') | |
return self.typename(*self.module_args, **self.module_kwargs) | |
class TiedLayerSpec(LayerSpec): | |
def __init__(self, key, typename, *module_args, forward_fn=None, tied_weight_attr=['weight'], **module_kwargs): | |
super().__init__(typename, *module_args, **module_kwargs) | |
self.key = key | |
self.forward_fn = forward_fn | |
self.tied_weight_attr = [tied_weight_attr] if type(tied_weight_attr) == str else tied_weight_attr | |
class PipelineModule(nn.Module): | |
"""Modules to be parallelized with pipeline parallelism. | |
The key constraint that enables pipeline parallelism is the | |
representation of the forward pass as a sequence of layers | |
and the enforcement of a simple interface between them. The | |
forward pass is implicitly defined by the module ``layers``. The key | |
assumption is that the output of each layer can be directly fed as | |
input to the next, like a ``torch.nn.Sequence``. The forward pass is | |
implicitly: | |
.. code-block:: python | |
def forward(self, inputs): | |
x = inputs | |
for layer in self.layers: | |
x = layer(x) | |
return x | |
.. note:: | |
Pipeline parallelism is not compatible with ZeRO-2 and ZeRO-3. | |
Args: | |
layers (Iterable): A sequence of layers defining pipeline structure. Can be a ``torch.nn.Sequential`` module. | |
num_stages (int, optional): The degree of pipeline parallelism. If not specified, ``topology`` must be provided. | |
topology (``deepspeed.runtime.pipe.ProcessTopology``, optional): Defines the axes of parallelism axes for training. Must be provided if ``num_stages`` is ``None``. | |
loss_fn (callable, optional): Loss is computed ``loss = loss_fn(outputs, label)`` | |
seed_layers(bool, optional): Use a different seed for each layer. Defaults to False. | |
seed_fn(type, optional): The custom seed generating function. Defaults to random seed generator. | |
base_seed (int, optional): The starting seed. Defaults to 1234. | |
partition_method (str, optional): The method upon which the layers are partitioned. Defaults to 'parameters'. | |
activation_checkpoint_interval (int, optional): The granularity activation checkpointing in terms of number of layers. 0 disables activation checkpointing. | |
activation_checkpoint_func (callable, optional): The function to use for activation checkpointing. Defaults to ``deepspeed.checkpointing.checkpoint``. | |
checkpointable_layers(list, optional): Checkpointable layers may not be checkpointed. Defaults to None which does not additional filtering. | |
""" | |
def __init__(self, | |
layers, | |
num_stages=None, | |
topology=None, | |
loss_fn=None, | |
seed_layers=False, | |
seed_fn=None, | |
base_seed=1234, | |
partition_method='parameters', | |
activation_checkpoint_interval=0, | |
activation_checkpoint_func=checkpointing.checkpoint, | |
checkpointable_layers=None): | |
super().__init__() | |
if num_stages is None and topology is None: | |
raise RuntimeError('must provide num_stages or topology') | |
self.micro_offset = 0 | |
self.loss_fn = loss_fn | |
self.checkpointable_layers = checkpointable_layers | |
if checkpointable_layers is not None: | |
assert isinstance(checkpointable_layers, list), "param `checkpointable_layers` must be type of list." | |
self.seed_layers = seed_layers | |
self.seed_fn = seed_fn | |
self.base_seed = base_seed | |
if dist.get_rank() == 0: | |
try: | |
seed_str = self.seed_fn.__name__ | |
except AttributeError: | |
seed_str = None | |
print(f'SEED_LAYERS={self.seed_layers} BASE_SEED={self.base_seed} SEED_FN={seed_str}') | |
# Setup world info | |
self.world_group = dist.new_group(ranks=range(dist.get_world_size())) | |
self.global_rank = dist.get_rank(group=self.world_group) | |
self.world_size = dist.get_world_size(group=self.world_group) | |
self.local_rank = int(os.environ.get("LOCAL_RANK", None)) | |
assert self.local_rank is not None | |
if topology: | |
self._topo = topology | |
self.num_stages = self._topo.get_dim('pipe') | |
else: | |
self.num_stages = num_stages | |
if topology is None: | |
if self.world_size % self.num_stages != 0: | |
raise RuntimeError( | |
f'num_stages ({self.num_stages}) must divide distributed world size ({self.world_size})') | |
dp = self.world_size // num_stages | |
topology = PipeDataParallelTopology(num_pp=num_stages, num_dp=dp) | |
self._topo = topology | |
# Construct communicators for pipeline topology | |
self._grid = PipelineParallelGrid(process_group=self.world_group, topology=self._topo) | |
self.stage_id = self._topo.get_coord(self.global_rank).pipe | |
# Initialize partition information | |
self._layer_specs = list(layers) | |
self._num_layers = len(self._layer_specs) | |
self._local_start = 0 | |
self._local_stop = None | |
self._partition_layers(method=partition_method) | |
self.forward_funcs = [] | |
self.fwd_map = {} | |
self.tied_modules = nn.ModuleDict() | |
self.tied_weight_attrs = {} | |
# Offset the random seed by the stage ID. | |
#newseed = get_accelerator().initial_seed() + self._grid.get_stage_id() | |
#ds_utils.set_random_seed(newseed) | |
#with torch.random.fork_rng(devices=[get_accelerator().current_device_name()]): | |
self._build() | |
self.to(get_accelerator().device_name(self.local_rank)) | |
self.tied_comms = self._index_tied_modules() | |
self._synchronize_tied_weights() | |
self.activation_checkpoint_interval = activation_checkpoint_interval | |
self.activation_checkpoint_func = activation_checkpoint_func | |
# if configuration use_reentrant = False, self.activation_checkpoint_func will be set to ``checkpointing.non_reentrant_checkpoint`` | |
def _build(self): | |
specs = self._layer_specs | |
for local_idx, layer in enumerate(specs[self._local_start:self._local_stop]): | |
layer_idx = local_idx + self._local_start | |
if self.seed_layers: | |
if self.seed_fn: | |
self.seed_fn(self.base_seed + layer_idx) | |
else: | |
ds_utils.set_random_seed(self.base_seed + layer_idx) | |
# Recursively build PipelineModule objects | |
if isinstance(layer, PipelineModule): | |
raise NotImplementedError('RECURSIVE BUILD NOT YET IMPLEMENTED') | |
# LayerSpec objects contain an nn.Module that should be allocated now. | |
elif isinstance(layer, nn.Module): | |
name = str(layer_idx) | |
self.forward_funcs.append(layer) | |
self.fwd_map.update({name: len(self.forward_funcs) - 1}) | |
self.add_module(name, layer) | |
# TiedLayerSpec objects contain an nn.Module that should be allocated now. | |
elif isinstance(layer, TiedLayerSpec): | |
# Build and register the module if we haven't seen it before. | |
if layer.key not in self.tied_modules: | |
self.tied_modules[layer.key] = layer.build() | |
self.tied_weight_attrs[layer.key] = layer.tied_weight_attr | |
if layer.forward_fn is None: | |
# Just use forward() | |
self.forward_funcs.append(self.tied_modules[layer.key]) | |
else: | |
# User specified fn with args (module, input) | |
self.forward_funcs.append(partial(layer.forward_fn, self.tied_modules[layer.key])) | |
# LayerSpec objects contain an nn.Module that should be allocated now. | |
elif isinstance(layer, LayerSpec): | |
module = layer.build() | |
name = str(layer_idx) | |
self.forward_funcs.append(module) | |
self.fwd_map.update({name: len(self.forward_funcs) - 1}) | |
self.add_module(name, module) | |
# Last option: layer may be a functional (e.g., lambda). We do nothing in | |
# that case and just use it in forward() | |
else: | |
self.forward_funcs.append(layer) | |
# All pipeline parameters should be considered as model parallel in the context | |
# of our FP16 optimizer | |
for p in self.parameters(): | |
p.ds_pipe_replicated = False | |
def _get_frozen_parameter_names(self, layer): | |
""" Get names of frozen parameters in the layer. | |
Returns: | |
A list of frozen parameter names | |
""" | |
if isinstance(layer, LayerSpec): | |
l = layer.build() | |
return [n for n, p in l.named_parameters() if not p.requires_grad] | |
elif isinstance(layer, nn.Module): | |
return [n for n, p in layer.named_parameters() if not p.requires_grad] | |
return [] | |
def _count_layer_params(self): | |
"""Count the trainable parameters in individual layers. | |
This routine will only build one layer at a time. | |
Returns: | |
A list of the number of parameters in each layer. | |
""" | |
param_counts = [0] * len(self._layer_specs) | |
for idx, layer in enumerate(self._layer_specs): | |
if isinstance(layer, LayerSpec): | |
l = layer.build() | |
params = filter(lambda p: p.requires_grad, l.parameters()) | |
param_counts[idx] = sum(p.numel() for p in params) | |
elif isinstance(layer, nn.Module): | |
params = filter(lambda p: p.requires_grad, layer.parameters()) | |
param_counts[idx] = sum(p.numel() for p in params) | |
return param_counts | |
def _find_layer_type(self, layername): | |
idxs = [] | |
typeregex = regex.compile(layername, regex.IGNORECASE) | |
for idx, layer in enumerate(self._layer_specs): | |
name = None | |
if isinstance(layer, LayerSpec): | |
name = layer.typename.__name__ | |
elif isinstance(layer, nn.Module): | |
name = layer.__class__.__name__ | |
else: | |
try: | |
name = layer.__name__ | |
except AttributeError: | |
continue | |
if typeregex.search(name): | |
idxs.append(idx) | |
if len(idxs) == 0: | |
raise RuntimeError(f"Partitioning '{layername}' found no valid layers to partition.") | |
return idxs | |
def forward(self, forward_input): | |
# We need to offset the seed by the microbatch ID. Save it in a local var to | |
# ensure it is preserved in the closure. Otherwise checkpointed forward funcs | |
# will see a different offset. | |
self.micro_offset += 1 | |
def exec_range_func(start, end): | |
''' Helper function to be used with checkpoint() | |
Adapted from torch.utils.checkpoint:checkpoint_sequential() | |
''' | |
local_micro_offset = self.micro_offset + 1 | |
def exec_func(*inputs): | |
# Single tensor inputs need to be unwrapped | |
if len(inputs) == 1: | |
inputs = inputs[0] | |
for idx, layer in enumerate(self.forward_funcs[start:end]): | |
self.curr_layer = idx + self._local_start | |
if self.seed_layers: | |
new_seed = (self.base_seed * local_micro_offset) + self.curr_layer | |
if self.seed_fn: | |
self.seed_fn(new_seed) | |
else: | |
ds_utils.set_random_seed(new_seed) | |
inputs = layer(inputs) | |
return inputs | |
return exec_func | |
if self.activation_checkpoint_interval == 0: | |
func = exec_range_func(0, len(self.forward_funcs)) | |
x = func(forward_input) | |
else: | |
num_layers = len(self.forward_funcs) | |
x = forward_input | |
for start_idx in range(0, num_layers, self.activation_checkpoint_interval): | |
end_idx = min(start_idx + self.activation_checkpoint_interval, num_layers) | |
funcs = self.forward_funcs[start_idx:end_idx] | |
# Since we either pass tensors or tuples of tensors without unpacking, we | |
# need to be careful not to double-wrap tensors with tuple. | |
if not isinstance(x, tuple): | |
x = (x, ) | |
if self._is_checkpointable(funcs): | |
x = self.activation_checkpoint_func(exec_range_func(start_idx, end_idx), *x) | |
else: | |
x = exec_range_func(start_idx, end_idx)(*x) | |
return x | |
def _partition_layers(self, method='uniform'): | |
num_stages = self._topo.get_dim('pipe') | |
stage_id = self._topo.get_coord(self.global_rank).pipe | |
if self.global_rank == 0: | |
logger.info(f'Partitioning pipeline stages with method {method}') | |
method = method.lower() | |
# Each stage gets a simple uniform number of layers. | |
if method == 'uniform': | |
num_layers = len(self._layer_specs) | |
self.parts = ds_utils.partition_uniform(num_items=num_layers, num_parts=num_stages) | |
elif method == 'parameters': | |
param_counts = self._count_layer_params() | |
self.parts = ds_utils.partition_balanced(weights=param_counts, num_parts=num_stages) | |
elif method.startswith('type:'): | |
layertype = method.split(':')[1] | |
binary_weights = [0] * len(self._layer_specs) | |
for idx in self._find_layer_type(layertype): | |
binary_weights[idx] = 1 | |
self.parts = ds_utils.partition_balanced(weights=binary_weights, num_parts=num_stages) | |
elif method == 'profile': | |
raise NotImplementedError(f'Partitioning method {method} not implemented.') | |
else: | |
raise NotImplementedError(f'Partitioning method {method} not implemented.') | |
# Print some information on the partitioning. | |
if self.global_rank == 0: | |
for stage in range(num_stages): | |
start = self.parts[stage] | |
stop = self.parts[stage + 1] | |
print(f'stage={stage} layers={stop - start}') | |
for idx, layer in enumerate(self._layer_specs[start:stop]): | |
name = str(layer) | |
if isinstance(layer, LayerSpec): | |
name = layer.typename.__name__ | |
if isinstance(layer, nn.Module): | |
name = layer.__class__.__name__ | |
else: | |
try: | |
name = layer.__name__ | |
except AttributeError: | |
pass | |
print(f' {idx+start:2d}: {name}') | |
if self.loss_fn: | |
try: | |
print(f' loss: {self.loss_fn.__name__}') | |
except AttributeError: | |
print(f' loss: {self.loss_fn.__class__.__name__}') | |
self._set_bounds(start=self.parts[stage_id], stop=self.parts[stage_id + 1]) | |
def allreduce_tied_weight_gradients(self): | |
'''All reduce the gradients of the tied weights between tied stages''' | |
for key, comm in self.tied_comms.items(): | |
for attr_name in comm['weight_attr']: | |
weight = getattr(self.tied_modules[key], attr_name) | |
dist.all_reduce(weight.grad, group=comm['group']) | |
def get_tied_weights_and_groups(self): | |
weight_group_list = [] | |
for key, comm in self.tied_comms.items(): | |
for attr_name in comm['weight_attr']: | |
weight = getattr(self.tied_modules[key], attr_name) | |
weight_group_list.append((weight, comm['group'])) | |
return weight_group_list | |
def _synchronize_tied_weights(self): | |
for key, comm in self.tied_comms.items(): | |
for attr_name in comm['weight_attr']: | |
dist.broadcast( | |
getattr(comm['module'], attr_name), | |
src=min(comm['ranks']), | |
group=comm['group'], | |
) | |
def _index_tied_modules(self): | |
''' Build communication structures for tied modules. ''' | |
tied_comms = {} | |
if self._topo.get_dim('pipe') == 1: | |
return tied_comms | |
specs = self._layer_specs | |
tie_keys = set(s.key for s in specs if isinstance(s, TiedLayerSpec)) | |
for key in tie_keys: | |
# Find the layers that the tied module appears in | |
tied_layers = [] | |
for idx, layer in enumerate(specs): | |
if isinstance(layer, TiedLayerSpec) and layer.key == key: | |
tied_layers.append(idx) | |
# Find all stages with this tied module | |
# TODO: Would be nice to remove the nested data/model parallelism loops and | |
# TODO: instead generalize in some way, since we really just care about the | |
# TODO: stage that owns the tied layer. Then loop over each (dp, mp, ...) | |
# TODO: fiber to generate process groups. | |
tied_stages = set(self.stage_owner(idx) for idx in tied_layers) | |
for dp in range(self._grid.data_parallel_size): | |
for mp in range(self._grid.get_slice_parallel_world_size()): | |
tied_ranks = [] | |
for s in sorted(tied_stages): | |
if self._grid.get_slice_parallel_world_size() > 1: | |
tied_ranks.append(self._grid.stage_to_global(stage_id=s, data=dp, model=mp)) | |
else: | |
tied_ranks.append(self._grid.stage_to_global(stage_id=s, data=dp)) | |
group = dist.new_group(ranks=tied_ranks) | |
# Record this tied module if we own a local copy of it. | |
if self.global_rank in tied_ranks: | |
assert key in self.tied_modules | |
if key in self.tied_modules: | |
tied_comms[key] = { | |
'ranks': tied_ranks, | |
'group': group, | |
'weight_attr': self.tied_weight_attrs[key], | |
'module': self.tied_modules[key], | |
} | |
# Only count the tied module once in the eyes of the FP16 optimizer | |
if self.global_rank != tied_ranks[0]: | |
for p in self.tied_modules[key].parameters(): | |
p.ds_pipe_replicated = True | |
''' | |
if len(tied_comms) > 0: | |
print(f'RANK={self.global_rank} tied_comms={tied_comms}') | |
''' | |
return tied_comms | |
def partitions(self): | |
return self.parts | |
def stage_owner(self, layer_idx): | |
assert 0 <= layer_idx < self._num_layers | |
for stage in range(self._topo.get_dim('pipe')): | |
if self.parts[stage] <= layer_idx < self.parts[stage + 1]: | |
return stage | |
raise RuntimeError(f'Layer {layer_idx} not owned? parts={self.parts}') | |
def _set_bounds(self, start=None, stop=None): | |
"""Manually define the range of layers that will be built on this process. | |
These boundaries are treated as list slices and so start is inclusive and stop is | |
exclusive. The default of None for both results in all layers being built | |
locally. | |
""" | |
self._local_start = start | |
self._local_stop = stop | |
def set_checkpoint_interval(self, interval): | |
assert interval >= 0 | |
self.checkpoint_interval = interval | |
def topology(self): | |
""" ProcessTopology object to query process mappings. """ | |
return self._topo | |
def mpu(self): | |
return self._grid | |
def num_pipeline_stages(self): | |
return self._topo.get_dim('pipe') | |
def ckpt_prefix(self, checkpoints_path, tag): | |
"""Build a prefix for all checkpoint files written by this module. """ | |
# All checkpoint files start with this | |
rank_name = 'module' | |
# Data parallelism is omitted from the naming convention because we are agnostic | |
# to this in the checkpoint. | |
omit_dims = frozenset(['data']) | |
axes = [a for a in self._grid._topo.get_axis_names() if a not in omit_dims] | |
for dim in axes: | |
rank = getattr(self._grid._topo.get_coord(rank=self.global_rank), dim) | |
rank_name += f'-{dim}_{rank:02d}' | |
ckpt_name = os.path.join(checkpoints_path, str(tag), rank_name) | |
return ckpt_name | |
def ckpt_layer_path(self, ckpt_dir, local_layer_idx): | |
"""Customize a prefix for a specific pipeline module layer. """ | |
idx = local_layer_idx + self._local_start | |
layer_ckpt_path = os.path.join(ckpt_dir, f'layer_{idx:02d}') | |
rank_repr = self._grid._topo.get_rank_repr(rank=self.global_rank) | |
if rank_repr != '': | |
layer_ckpt_path += f'-{rank_repr}' | |
layer_ckpt_path += '-model_states.pt' | |
return layer_ckpt_path | |
def ckpt_layer_path_list(self, ckpt_dir, local_layer_idx): | |
"""Get all ckpt file list for a specific pipeline module layer. """ | |
idx = local_layer_idx + self._local_start | |
layer_ckpt_path = os.path.join(ckpt_dir, f'layer_{idx:02d}-') | |
layer_ckpt_path += "*model_states.pt" | |
ckpt_files = glob.glob(layer_ckpt_path) | |
ckpt_files.sort() | |
return ckpt_files | |
def save_state_dict(self, save_dir, checkpoint_engine, exclude_frozen_params=False): | |
# Processes having the same model parallel rank on different data parallel instances | |
# have identical layer weights. We can distribute the task of saving the layer weights | |
# among the data parallel ranks. For example, if a pipeline stage has 9 layers and | |
# if there are 2 data parallel instances, rank 0 will save the first 5 layers and | |
# rank 1 will save the last 4. | |
dp_rank = self._grid.data_parallel_id | |
dp_size = self._grid.data_parallel_size | |
num_layers = len(self.forward_funcs) | |
if self.checkpoint_parallel_write_pipeline: | |
# spread layers evenly across data parallel ranks | |
offsets = ds_utils.partition_uniform(num_layers, dp_size) | |
start, end = offsets[dp_rank], offsets[dp_rank + 1] | |
else: | |
# data parallel rank 0 writes all layers | |
if dp_rank != 0: | |
return | |
start, end = 0, num_layers | |
layer_list = self.forward_funcs[start:end] | |
checkpoint_engine.makedirs(save_dir, exist_ok=True) | |
for idx, layer in enumerate(layer_list): | |
model_ckpt_path = self.ckpt_layer_path(save_dir, start + idx) | |
if not hasattr(layer, 'state_dict'): | |
continue | |
orig_state_dict = layer.state_dict() | |
if exclude_frozen_params: | |
for n in self._get_frozen_parameter_names(layer): | |
del orig_state_dict[n] | |
final_state_dict = clone_tensors_for_torch_save(orig_state_dict) | |
checkpoint_engine.save(final_state_dict, model_ckpt_path) | |
def load_state_dir(self, load_dir, checkpoint_engine, strict=True): | |
for idx, layer in enumerate(self.forward_funcs): | |
# Functions, etc. will not have state_dicts | |
if not hasattr(layer, 'load_state_dict'): | |
continue | |
# get all checkpoint files for the layer. | |
model_ckpt_list = self.ckpt_layer_path_list(load_dir, idx) | |
mp_rank = self._grid.get_slice_parallel_rank() | |
mp_world_size = self._grid.get_slice_parallel_world_size() | |
sd_loader = SDLoaderFactory.get_sd_loader(model_ckpt_list, | |
version=2.0, | |
checkpoint_engine=checkpoint_engine) | |
load_path, checkpoint, _ = sd_loader.load(mp_world_size, mp_rank, module_key=None, is_pipe_parallel=True) | |
layer.load_state_dict(checkpoint, strict=strict) | |
# if self._grid.data_parallel_id == 0: | |
# logger.info( | |
# f'RANK={self.global_rank} Loaded layer={idx+self._local_start} file={load_path}' | |
# ) | |
self._synchronize_tied_weights() | |
def _is_checkpointable(self, funcs): | |
if self.activation_checkpoint_func is not checkpointing.non_reentrant_checkpoint: | |
# This hook excludes the embedding layer | |
# because only non_reentrant_checkpoint can accept inputs with requires_grad=False | |
# otherwise, the backward of the embedding layer won't receive gradients. | |
if self.__class__.__name__ in ('GPTModelPipe', 'GPT2ModelPipe'): | |
return all('ParallelTransformerLayerPipe' in f.__class__.__name__ for f in funcs) | |
if self.checkpointable_layers is not None: | |
return all(f.__class__.__name__ in self.checkpointable_layers for f in funcs) | |
params = [f.parameters() for f in funcs if isinstance(f, torch.nn.Module)] | |
return any(len(list(p)) > 0 for p in params) | |
def get_additional_losses(self): | |
""" Returns model specific additional losses for reporting | |
Return a dictionary of {"loss name": loss_value} or None if no additional losses. | |
""" | |
return None | |