applied-ai-018's picture
Add files using upload-large-folder tool
dd3126b verified
raw
history blame
5.33 kB
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import pickle
import typing
import torch
from deepspeed import comm as dist
from deepspeed.utils.torch import required_torch_version
from deepspeed.accelerator import get_accelerator
_groups = None
_grid = None
_async = []
def can_send_recv() -> bool:
return required_torch_version(min_version=1.8)
#initializes adjacent process groups
#run this only after deepspeed.init_distributed() has been called
def init_process_groups(grid):
global _groups, _grid
_grid = grid
assert _grid.pipe_parallel_size > 1, "There is no pipeline parallelism"
if not can_send_recv():
_groups = [dist.new_group(ranks=group) for group in _grid.p2p_groups]
def _is_valid_send_recv(src_stage, dest_stage):
first_stage = 0
last_stage = _grid.pipe_parallel_size - 1
assert abs(src_stage-dest_stage) == 1 or \
(src_stage == first_stage and dest_stage == last_stage) or \
(src_stage == last_stage and dest_stage == first_stage), \
"Functionality currently limited to send and receive between adjacent ranks only"
def send(tensor, dest_stage, async_op=False):
global _groups
assert async_op == False, "Doesn't support async_op true"
src_stage = _grid.get_stage_id()
_is_valid_send_recv(src_stage, dest_stage)
dest_rank = _grid.stage_to_global(stage_id=dest_stage)
if async_op:
global _async
op = dist.isend(tensor, dest_rank)
_async.append(op)
else:
if can_send_recv():
return dist.send(tensor, dest_rank)
else:
group = _get_send_recv_group(src_stage, dest_stage)
src_rank = _grid.stage_to_global(stage_id=src_stage)
return dist.broadcast(tensor, src_rank, group=group, async_op=async_op)
def recv(tensor, src_stage, async_op=False):
global _groups
assert async_op == False, "Doesn't support async_op true"
dest_stage = _grid.get_stage_id()
_is_valid_send_recv(src_stage, dest_stage)
src_rank = _grid.stage_to_global(stage_id=src_stage)
if async_op:
global _async
op = dist.irecv(tensor, src_rank)
_async.append(op)
else:
if can_send_recv():
return dist.recv(tensor, src_rank)
else:
group = _get_send_recv_group(src_stage, dest_stage)
return dist.broadcast(tensor, src_rank, group=group, async_op=async_op)
def wait():
global _async
for op in _async:
op.wait()
_async = []
get_accelerator().synchronize()
def send_obj(msg: typing.Any, dest: int):
"""Send an arbitrary python object to ``dest``.
Note: ``msg`` must be pickleable.
WARN: This incurs a CPU -> GPU transfer and should be used sparingly
for performance reasons.
Args:
msg (typing.Any): The object to send.
dest (int): Destination rank.
"""
# serialize the message
msg = pickle.dumps(msg)
# construct a tensor to send
msg = torch.ByteTensor(torch.ByteStorage.from_buffer(msg)).to(get_accelerator().device_name())
# Send meta and message
length_tensor = torch.tensor([len(msg)], dtype=torch.long).to(get_accelerator().device_name())
dist.send(length_tensor, dst=dest)
dist.send(msg, dst=dest)
def recv_obj(sender: int) -> typing.Any:
"""Receive an arbitrary python object from ``sender``.
WARN: This incur a CPU <-> GPU transfers and should be used sparingly
for performance reasons.
Args:
sender (int): The rank sending the message.
"""
# Get message meta
length = torch.tensor([0], dtype=torch.long).to(get_accelerator().device_name())
dist.recv(length, src=sender)
# Receive and deserialize
msg = torch.empty(length.item(), dtype=torch.uint8).to(get_accelerator().device_name())
dist.recv(msg, src=sender)
msg = pickle.loads(msg.cpu().numpy().tobytes())
def _to(x):
"""Recursively move to the current device."""
if torch.is_tensor(x):
return x.to(get_accelerator().device_name())
if isinstance(x, (tuple, list)):
ret = [_to(x_) for x_ in x]
if isinstance(x, tuple):
ret = tuple(ret)
return ret
# handle kwargs
if isinstance(x, dict):
ret = dict()
for key, val in x.items():
ret[_to(key)] = _to(val)
return ret
# Anything else is a no-op
return x
msg = _to(msg)
return msg
def _get_send_recv_group(src_stage, dest_stage):
'''the group id is always the smaller rank unless its a wrap around'''
stage_id = None
first_stage = 0
last_stage = _grid.pipe_parallel_size - 1
if (src_stage == first_stage and dest_stage == last_stage
or dest_stage == first_stage and src_stage == last_stage):
stage_id = last_stage
elif src_stage > dest_stage:
stage_id = dest_stage
else:
stage_id = src_stage
'''group_id corresponds to group of [group_id, group_id+1]
unless group_id is the rank of the last stage
in which case group_id corresponds to group[group_id-num_stages+1, group_id]
'''
group_id = _grid.stage_to_global(stage_id=stage_id)
return _groups[group_id]