applied-ai-018's picture
Add files using upload-large-folder tool
734b6a1 verified
raw
history blame
41.5 kB
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
"""
Copyright NVIDIA/Megatron
Helper functions and classes from multiple sources.
"""
from collections.abc import Iterable
from deepspeed.moe.utils import is_moe_param
import os
import psutil
import gc
from math import sqrt
import torch
from deepspeed import comm as dist
try:
from torch._six import inf
except ModuleNotFoundError:
from torch import inf
from deepspeed.utils import groups, logger
from deepspeed.utils.bwc import (bwc_tensor_model_parallel_rank, bwc_pipeline_parallel_world_size,
bwc_pipeline_parallel_group)
from deepspeed.runtime.constants import PIPE_REPLICATED
from numpy import prod
from deepspeed.accelerator import get_accelerator
from deepspeed.module_inject.policy import transpose
from torch.nn import functional as F
torch_memory_reserved = get_accelerator().memory_reserved
torch_max_memory_reserved = get_accelerator().max_memory_reserved
class DummyOptim():
"""
Dummy optimizer presents model parameters as a param group, this is
primarily used to allow ZeRO-3 without an optimizer
"""
def __init__(self, params):
self.param_groups = []
self.param_groups.append({'params': params})
graph_cache = {}
def graph_process(replay_first_step, func, *args, **kwargs):
# `func` should only contain operations on the GPU
# Please ensure that the memory address of the data required by 'func' remains constant
if func.__name__ not in graph_cache:
cuda_stream = get_accelerator().Stream()
cuda_stream.wait_stream(get_accelerator().current_stream())
with get_accelerator().stream(cuda_stream):
func(*args, **kwargs)
get_accelerator().current_stream().wait_stream(cuda_stream)
graph_cache[func.__name__] = get_accelerator().create_graph()
with get_accelerator().capture_to_graph(graph_cache[func.__name__]):
func(*args, **kwargs)
if replay_first_step:
get_accelerator().replay_graph(graph_cache[func.__name__])
else:
get_accelerator().replay_graph(graph_cache[func.__name__])
def noop_decorator(func):
return func
class noop_context(object):
def __init__(self):
pass
def __enter__(self):
pass
def __exit__(self, exc_type, exc_val, exc_tb):
pass
def ensure_directory_exists(filename):
"""Create the directory path to ``filename`` if it does not already exist.
Args:
filename (str): A file path.
"""
dirname = os.path.dirname(filename)
os.makedirs(dirname, exist_ok=True)
def set_random_seed(seed):
"""Set the random seed for common PRNGs used during training: random, numpy, and torch.
Args:
seed (int): the seed to use
"""
import numpy
import random
random.seed(seed)
numpy.random.seed(seed)
torch.manual_seed(seed)
def is_model_parallel_parameter(p) -> bool:
if hasattr(p, 'model_parallel') and p.model_parallel:
return True
if hasattr(p, 'tensor_model_parallel') and p.tensor_model_parallel:
return True
return False
def copy_to_device(item, device, criterion_func):
"""
Return a copy of tensor on specified device.
Works on individual tensors, and tensors contained/nested in lists, tuples, and dicts.
Parameters:
item: tensor to copy or (possibly nested) container of tensors to copy.
device: target device
criterion_func: Function to restrict copy operation to items meet criterion
Returns:
None
"""
if criterion_func(item):
return item.to(device)
elif isinstance(item, list):
return [copy_to_device(v, device, criterion_func) for v in item]
elif isinstance(item, tuple):
return tuple([copy_to_device(v, device, criterion_func) for v in item])
elif isinstance(item, dict):
return {k: copy_to_device(v, device, criterion_func) for k, v in item.items()}
else:
return item
def move_to_device(item, device, criterion_func):
"""
Move tensor on to specified device by changing the storage.
Works on individual tensors, and tensors contained/nested in lists, tuples, and dicts.
Parameters:
item: tensor to move or (possibly nested) container of tensors to move.
device: target device
criterion_func: Function to restrict move operation to items meet criterion
Returns:
None
"""
if criterion_func(item):
device_copy = item.to(device)
item.data = device_copy.data
return item
elif isinstance(item, list):
return [move_to_device(v, device, criterion_func) for v in item]
elif isinstance(item, tuple):
return tuple([move_to_device(v, device, criterion_func) for v in item])
elif isinstance(item, dict):
return {k: move_to_device(v, device, criterion_func) for k, v in item.items()}
else:
return item
def get_norm_with_moe_layers_fast(all_groups_norm, group):
# This implementation standardizes the grad_norm across ranks. A more precise implementation can be found in 'get_norm_with_moe_layers'.
# Need to allreduce (avg) the norms across different ranks because moe params will not be synced during allreduce
scaled_norm = all_groups_norm * 1.0 / float(dist.get_world_size(group=group))
scaled_norm_tensor = torch.tensor(scaled_norm, device=get_accelerator().current_device(), dtype=torch.float)
dist.all_reduce(scaled_norm_tensor, group=group)
all_groups_norm = scaled_norm_tensor.item()
#print(f"old = {all_groups_norm_old} and new = {all_groups_norm} at rank: {deepspeed.comm.get_rank()}")
return all_groups_norm
class CheckOverflow(object):
'''Checks for overflow in gradient across parallel process'''
def __init__(self, param_groups=None, mpu=None, zero_reduce_scatter=False, deepspeed=None):
self.mpu = mpu
self.params = [] if param_groups else None
self.zero_reduce_scatter = zero_reduce_scatter
self.deepspeed = deepspeed
self.has_moe_params = False
if param_groups:
for group in param_groups:
for param in group:
self.params.append(param)
if is_moe_param(param):
self.has_moe_params = True
def check_using_norm(self, norm_group, reduce_overflow=True):
# TODO: I don't think reduce_overflow is needed if mpu is None
overflow = -1 in norm_group
overflow_gpu = get_accelerator().FloatTensor([overflow])
if self.has_moe_params:
# In this case, we need to do an all_reduce across
# the expert_parallel_group, so that if there was
# an overflow due to expert weights, we detect it
# Only need to check groups.get_largest_expert_parallel_group()
dist.all_reduce(overflow_gpu, op=dist.ReduceOp.MAX, group=groups._get_max_expert_parallel_group())
if self.mpu is not None:
dist.all_reduce(overflow_gpu, op=dist.ReduceOp.MAX, group=self.mpu.get_model_parallel_group())
elif reduce_overflow:
dist.all_reduce(overflow_gpu, op=dist.ReduceOp.MAX)
dist.barrier()
overflow = overflow_gpu[0].item()
return bool(overflow)
def check(self, param_groups=None):
params = []
has_moe_params = False
if param_groups is None:
params = self.params
has_moe_params = self.has_moe_params
else:
assert param_groups is not None, \
"self.params and param_groups both cannot be none"
for group in param_groups:
for param in group:
params.append(param)
if is_moe_param(param):
has_moe_params = True
return self.has_overflow(params, has_moe_params=has_moe_params)
# `params` is a list / generator of torch.Variable
def has_overflow_serial(self, params):
for i, p in enumerate(params):
if p.grad is not None and self._has_inf_or_nan(p.grad.data, i):
return True
return False
def has_overflow(self, params, has_moe_params=None):
if has_moe_params is None:
has_moe_params = self.has_moe_params
overflow = self.has_overflow_serial(params)
# Since each model parallel GPU carries only part of the model,
# make sure overflow flag is synced across all the model parallel GPUs
overflow_gpu = get_accelerator().ByteTensor([overflow])
# deepspeed.comm.all_reduce(overflow_gpu,
# op=deepspeed.comm.ReduceOp.MAX,
# group=mpu.get_model_parallel_group())
if has_moe_params:
# All reduce this across expert_parallel_group, so that if an expert
# overflows, we detect it here
dist.all_reduce(overflow_gpu, op=dist.ReduceOp.MAX, group=groups._get_max_expert_parallel_group())
if self.zero_reduce_scatter:
dist.all_reduce(overflow_gpu, op=dist.ReduceOp.MAX, group=dist.get_world_group())
elif self.mpu is not None:
if self.deepspeed is not None:
using_pipeline = hasattr(self.deepspeed, 'pipeline_enable_backward_allreduce')
if (using_pipeline and self.deepspeed.pipeline_enable_backward_allreduce is False) or (
not using_pipeline and self.deepspeed.enable_backward_allreduce is False):
dist.all_reduce(overflow_gpu, op=dist.ReduceOp.MAX, group=self.mpu.get_data_parallel_group())
dist.all_reduce(overflow_gpu, op=dist.ReduceOp.MAX, group=self.mpu.get_model_parallel_group())
elif self.deepspeed is not None and self.deepspeed.enable_backward_allreduce is False:
dist.all_reduce(overflow_gpu, op=dist.ReduceOp.MAX, group=dist.get_world_group())
overflow = overflow_gpu[0].item()
return bool(overflow)
# `x` is a torch.Tensor
@staticmethod
def _has_inf_or_nan(x, i):
try:
# if x is half, the .float() incurs an additional deep copy, but it's necessary if
# Pytorch's .sum() creates a one-element tensor of the same type as x
# (which is true for some recent version of pytorch).
cpu_sum = float(x.float().sum())
# More efficient version that can be used if .sum() returns a Python scalar
# cpu_sum = float(x.sum())
except RuntimeError as instance:
# We want to check if inst is actually an overflow exception.
# RuntimeError could come from a different error.
# If so, we still want the exception to propagate.
if "value cannot be converted" not in instance.args[0]:
raise
return True
else:
if cpu_sum == float('inf') or cpu_sum == -float('inf') or cpu_sum != cpu_sum:
return True
return False
def _handle_overflow(cpu_sum, x, i):
import math
rank = dist.get_rank()
if rank == 0:
t_i = -1
for v_i, v in enumerate(x.data.contiguous().view(-1)):
if not math.isfinite(float(v)):
t_i = v_i
break
logger.info(f"rank {rank} detected overflow {cpu_sum} in tensor {i}:{t_i} shape {x.shape}")
def get_global_norm(norm_list):
""" Compute total from a list of norms
"""
total_norm = 0.0
for norm in norm_list:
total_norm += norm**2.0
# logger.info(f'norm_list = {norm_list} global = {sqrt(total_norm)}')
return sqrt(total_norm)
def clip_grad_norm_(parameters, max_norm, norm_type=2, mpu=None):
"""Clips gradient norm of an iterable of parameters.
This has been adapted from Nvidia megatron. We add norm averaging
to consider MoE params when calculating norm as they will result
in different norms across different ranks.
This is adapted from torch.nn.utils.clip_grad.clip_grad_norm_ and
added functionality to handle model parallel parameters. Note that
the gradients are modified in place.
Arguments:
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
single Tensor that will have gradients normalized
max_norm (float or int): max norm of the gradients
norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
infinity norm.
Returns:
Total norm of the parameters (viewed as a single vector).
"""
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = list(filter(lambda p: p.grad is not None, parameters))
norm_type = float(norm_type)
all_norms = []
if norm_type == inf:
for p in parameters:
all_norms.append(p.grad.data.abs().max().float())
total_norm = torch.stack(all_norms).max()
total_norm = total_norm.to(get_accelerator().current_device_name())
# Take max across all GPUs.
if mpu is not None:
dist.all_reduce(total_norm, op=dist.ReduceOp.MAX, group=mpu.get_model_parallel_group())
else:
total_norm = 0
for p in parameters:
if mpu is not None:
if (mpu.get_model_parallel_rank() == 0) or is_model_parallel_parameter(p):
param_norm = p.grad.data.detach().float().norm(norm_type)
all_norms.append(param_norm)
else:
param_norm = p.grad.data.detach().float().norm(norm_type)
all_norms.append(param_norm)
if len(all_norms) > 0:
total_norm = torch.stack(all_norms).square().sum().float()
else:
total_norm = get_accelerator().FloatTensor([0.0])
total_norm = total_norm.to(get_accelerator().current_device_name())
# Sum across all model parallel GPUs.
if mpu is not None:
dist.all_reduce(total_norm, op=dist.ReduceOp.SUM, group=mpu.get_model_parallel_group())
total_norm = total_norm.pow(1. / norm_type)
# Need to average total_norm across different GPUs due to the presence of moe params
pg = groups._get_data_parallel_group()
scaled_norm = total_norm * 1.0 / float(dist.get_world_size(group=pg))
scaled_norm_tensor = scaled_norm
dist.all_reduce(scaled_norm_tensor, group=pg)
total_norm = scaled_norm_tensor
total_norm = total_norm.to(parameters[0].device)
max_norm = torch.tensor([float(max_norm)], device=total_norm.device)
clip_coef = max_norm / (total_norm + 1e-6)
tmp_tensor = torch.tensor([1.0], device=clip_coef.device)
clip_coef = torch.min(tmp_tensor, clip_coef)
for p in parameters:
p.grad.data.mul_(clip_coef)
return total_norm
def get_flattened_grad_norm(parameters, norm_type=2, mpu=None, grad_norm_mask=None):
"""Get grad norm of an iterable of parameters.
This is adapted from torch.nn.utils.clip_grad.clip_grad_norm_ and
added functionality to handle model parallel parameters. Note that
the gradients are modified in place. Taken from Nvidia Megatron.
Arguments:
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
single Tensor that will have gradients normalized
norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
infinity norm.
grad_norm_mask (List[Tensor]): A list of Tensor, where
each Tensor is a 2D Tensor containing ranges of [start_index, end_index].
Returns:
Total norm of the parameters (viewed as a single vector).
"""
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = list(filter(lambda p: p.grad is not None, parameters))
norm_type = float(norm_type)
if norm_type == inf:
total_norm = max(p.grad.data.abs().max() for p in parameters)
total_norm_cuda = get_accelerator().FloatTensor([float(total_norm)])
# Take max across all GPUs.
if mpu is not None:
dist.all_reduce(total_norm_cuda, op=dist.ReduceOp.MAX, group=mpu.get_model_parallel_group())
total_norm = total_norm_cuda[0].item()
else:
total_norm = 0.
for idx, p in enumerate(parameters):
# Use grad_norm_mask to avoid redundant computation of flattened gradient norm
if grad_norm_mask is not None and len(grad_norm_mask[idx]) > 0:
# A loop-free implementation to create a mask tensor based on a range list
# which is logically equivalent to the following implementation.
# # mask_tensor_ = torch.zeros_like(p, device=p.device, dtype=bool)
# # for mask_idx in grad_norm_mask[idx]:
# # mask_tensor_[mask_idx[0]:mask_idx[1]] = True
cum_sum_pairs = torch.tensor([1, -1], device=get_accelerator().current_device(),
dtype=p.dtype).repeat(grad_norm_mask[idx].shape[0], 1)
mask_tensor = torch.zeros(p.shape[0] + 1, device=get_accelerator().current_device(), dtype=p.dtype)
mask_tensor = mask_tensor.scatter_(0, grad_norm_mask[idx].view(-1),
cum_sum_pairs.view(-1)).cumsum(0).bool()[:-1]
param_norm = torch.masked_fill(p.grad.data, mask_tensor, 0).float().norm(norm_type)
else:
param_norm = p.grad.data.float().norm(norm_type)
total_norm += param_norm.item()**norm_type
# Sum across all model parallel GPUs.
total_norm_cuda = get_accelerator().FloatTensor([float(total_norm)])
if mpu is not None:
dist.all_reduce(total_norm_cuda, op=dist.ReduceOp.SUM, group=mpu.get_model_parallel_group())
total_norm = total_norm_cuda[0].item()**(1. / norm_type)
if total_norm == float('inf') or total_norm == -float('inf') or total_norm != total_norm:
total_norm = -1
return total_norm
def get_grad_zeros(parameters, mpu=None):
"""Compute the number of grads with zero values.
This is adapted from get_grad_norm
Arguments:
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
single Tensor that will have gradients normalized
Returns:
Total number of params with zero values (viewed as a single vector).
"""
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = list(filter(lambda p: p.grad is not None, parameters))
total_zeros = 0.
tensor_mp_rank = bwc_tensor_model_parallel_rank(mpu=mpu)
for p in parameters:
# Pipeline parallelism may replicate parameters. Avoid multi-counting.
if hasattr(p, PIPE_REPLICATED) and p.ds_pipe_replicated:
continue
# Filter to avoid over-counting replicated tensors from tensor
# model parallelism
if (tensor_mp_rank > 0) and not is_model_parallel_parameter(p):
continue
count_zeros = p.grad.numel() - torch.count_nonzero(p.grad)
total_zeros += count_zeros.item()
# Sum across all model parallel GPUs.
total_zeros_cuda = get_accelerator().FloatTensor([float(total_zeros)])
if mpu is not None:
dist.all_reduce(total_zeros_cuda, op=dist.ReduceOp.SUM, group=mpu.get_model_parallel_group())
total_zeros = total_zeros_cuda[0].item()
return total_zeros
def get_weight_norm(parameters, norm_type=2, mpu=None):
"""Get norm of an iterable of parameters.
This is adapted from torch.nn.utils.clip_grad.clip_grad_norm_ and
added functionality to handle model parallel parameters. Note that
the gradients are modified in place. Taken from Nvidia Megatron.
Arguments:
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
single Tensor that will have gradients normalized
norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
infinity norm.
Returns:
Total norm of the parameters (viewed as a single vector).
-1 if the norm value is NaN or Inf.
"""
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
norm_type = float(norm_type)
if norm_type == inf:
total_norm = max(p.data.abs().max() for p in parameters)
total_norm_cuda = get_accelerator().FloatTensor([float(total_norm)])
# Take max across all GPUs.
if mpu is not None:
dist.all_reduce(total_norm_cuda, op=dist.ReduceOp.MAX, group=mpu.get_model_parallel_group())
total_norm = total_norm_cuda[0].item()
else:
total_norm = 0.
tensor_mp_rank = bwc_tensor_model_parallel_rank(mpu=mpu)
for p in parameters:
# Pipeline parallelism may replicate parameters. Avoid multi-counting.
if hasattr(p, PIPE_REPLICATED) and p.ds_pipe_replicated:
continue
# Filter to avoid over-counting replicated tensors from tensor
# model parallelism
if (tensor_mp_rank > 0) and not is_model_parallel_parameter(p):
continue
param_norm = p.data.float().norm(norm_type)
total_norm += param_norm**norm_type
# Sum across all model parallel GPUs.
total_norm_cuda = get_accelerator().FloatTensor([float(total_norm)])
if mpu is not None:
dist.all_reduce(total_norm_cuda, op=dist.ReduceOp.SUM, group=mpu.get_model_parallel_group())
total_norm = total_norm_cuda[0].item()**(1. / norm_type)
if total_norm == float('inf') or total_norm == -float('inf') or total_norm != total_norm:
total_norm = -1
return total_norm
def prefix_sum_inc(weights):
""" Compute an inclusive prefix sum.
Example:
>>> prefix_sum_inc([3,4,5])
[3, 7, 12]
"""
weights_ = [w for w in weights]
for x in range(1, len(weights_)):
weights_[x] += weights_[x - 1]
return weights_
def partition_uniform(num_items, num_parts):
import numpy
parts = [0] * (num_parts + 1)
# First check for the trivial edge case
if num_items <= num_parts:
for p in range(num_parts + 1):
parts[p] = min(p, num_items)
return parts
chunksize = num_items // num_parts
residual = num_items - (chunksize * num_parts)
parts = numpy.arange(0, (num_parts + 1) * chunksize, chunksize)
for i in range(residual):
parts[i + 1:] += 1
parts = parts.tolist()
return parts
def partition_balanced(weights, num_parts):
"""
use dynamic programming solve `The Linear Partition Problem`.
see https://www8.cs.umu.se/kurser/TDBAfl/VT06/algorithms/BOOK/BOOK2/NODE45.HTM
"""
import numpy as np
n = len(weights)
m = num_parts
if n <= m:
return partition_uniform(n, m)
dp_max = np.full((n + 1, m + 1), np.inf)
dp_min = np.full((n + 1, m + 1), np.inf)
dp_cost = np.full((n + 1, m + 1), np.inf)
position = np.zeros((n + 1, m + 1), dtype=int)
prefix_sum = np.zeros((n + 1))
prefix_sum[1:] = np.cumsum(weights)
dp_max[0, 0] = 0
dp_cost[0, 0] = 0
for i in range(1, n + 1):
for j in range(1, min(i, m) + 1):
for k in range(i):
max_sum = max(dp_max[k, j - 1], prefix_sum[i] - prefix_sum[k])
min_sum = min(dp_min[k, j - 1], prefix_sum[i] - prefix_sum[k])
cost = max_sum - min_sum
if dp_cost[i, j] >= cost:
dp_cost[i, j] = cost
dp_max[i, j] = max_sum
dp_min[i, j] = min_sum
position[i, j] = k
parts = [n]
for i in reversed(range(1, m + 1)):
parts.append(position[parts[-1], i])
parts.reverse()
return parts
class PartitionedTensor:
def __init__(self, tensor, group, partition_meta=None):
super().__init__()
self.group = group
self.num_parts = dist.get_world_size(group=self.group)
self.rank = dist.get_rank(group=self.group)
self.orig_size = list(tensor.size())
self.orig_device = tensor.device
self.local_data, self.partition = self._partition_tensor(tensor)
self.even_split = tensor.numel() % self.num_parts == 0
@classmethod
def from_meta(cls, meta, local_part, group, device=get_accelerator().device_name()):
assert meta.dtype == torch.long
dummy = torch.ones(dist.get_world_size(group=group))
part_obj = cls(tensor=dummy, group=group)
meta = meta.tolist()
# [N, list0, ..., listN-1]
part_obj.orig_size = meta[1:(1 + meta[0])]
meta = meta[1 + meta[0]:]
part_obj.orig_device = device
part_obj.local_data = local_part.detach()
part_obj.group = group
# Partition is encoded like the rowptr of a CSR matrix:
# [num_parts, rank, 0, part_1, ..., part_num_parts]
# TODO: support shuffle between different partition granularities
assert part_obj.num_parts == meta[0]
assert part_obj.rank == meta[1]
part_obj.partition = meta[2:] # length num_parts+1
return part_obj
def _partition_tensor(self, tensor):
partition = partition_uniform(num_items=tensor.numel(), num_parts=self.num_parts)
start = partition[self.rank]
length = partition[self.rank + 1] - start
tensor_part = tensor.detach().contiguous().view(-1).narrow(0, start=start, length=length).clone()
return tensor_part, partition
def full(self, device=None):
if device is None:
device = self.orig_device
# Allocate the full tensor as a flat buffer.
full_numel = prod(self.full_size())
flat_tensor = torch.zeros([full_numel], dtype=self.local_data.dtype, device=device)
if self.even_split:
# Collect the full tensor
dist.all_gather_into_tensor(flat_tensor, self.local_data, group=self.group)
else:
for part_id in range(self.num_parts):
part_size = self.partition[part_id + 1] - self.partition[part_id]
buf = flat_tensor.narrow(0, start=self.partition[part_id], length=part_size)
if part_id == self.rank:
buf.copy_(self.local_data)
dist.broadcast(buf, part_id, self.group)
return flat_tensor.view(self.full_size()).clone().detach()
def to_meta(self):
"""Returns a torch.LongTensor that encodes partitioning information.
Can be used along with ``data()`` to serialize a ``PartitionedTensor`` for
communication.
Returns:
torch.LongTensor: a tensor encoding the meta-information for the partitioning
"""
meta = []
meta.append(len(self.orig_size))
meta += list(self.orig_size)
meta.append(self.num_parts)
meta.append(self.rank)
meta += self.partition
return torch.LongTensor(data=meta).to(self.orig_device)
def data(self):
return self.local_data
def local_size(self):
return self.local_data.size()
def full_size(self):
return self.orig_size
mem_alloced = 0
mem_cached = 0
def memory_status(msg, print_rank=-1, reset_max=False):
global mem_alloced, mem_cached
rank = dist.get_rank()
if print_rank != -1 and rank != print_rank:
return
get_accelerator().synchronize()
if reset_max:
get_accelerator().reset_max_memory_cached()
get_accelerator().reset_max_memory_allocated()
new_alloced = get_accelerator().memory_allocated()
new_cached = get_accelerator().memory_cached()
delta_alloced = new_alloced - mem_alloced
delta_cached = new_cached - mem_cached
mem_cached = new_cached
mem_alloced = new_alloced
max_alloced = get_accelerator().max_memory_allocated()
max_cached = get_accelerator().max_memory_cached()
# convert to GB for printing
new_alloced /= 1024**3
new_cached /= 1024**3
delta_alloced /= 1024**3
delta_cached /= 1024**3
max_alloced /= 1024**3
max_cached /= 1024**3
print(
f'RANK={rank} MEMSTATS', msg, f'device={get_accelerator().current_device_name()} '
f'current alloc={new_alloced:0.4f}GB (delta={delta_alloced:0.4f}GB max={max_alloced:0.4f}GB) '
f'current cache={new_cached:0.4f}GB (delta={delta_cached:0.4f}GB max={max_cached:0.4f}GB)')
def get_ma_status():
if dist.is_initialized() and not dist.get_rank() == 0:
return 0
return get_accelerator().memory_allocated()
def empty_cache():
get_accelerator().empty_cache()
get_accelerator().reset_peak_memory_stats()
def see_memory_usage(message, force=False):
if not force:
return
if dist.is_initialized() and not dist.get_rank() == 0:
return
# python doesn't do real-time garbage collection so do it explicitly to get the correct RAM reports
gc.collect()
# Print message except when distributed but not rank 0
logger.info(message)
logger.info(f"MA {round(get_accelerator().memory_allocated() / (1024 * 1024 * 1024),2 )} GB \
Max_MA {round(get_accelerator().max_memory_allocated() / (1024 * 1024 * 1024),2)} GB \
CA {round(torch_memory_reserved() / (1024 * 1024 * 1024),2)} GB \
Max_CA {round(torch_max_memory_reserved() / (1024 * 1024 * 1024))} GB ")
vm_stats = psutil.virtual_memory()
used_GB = round(((vm_stats.total - vm_stats.available) / (1024**3)), 2)
logger.info(f'CPU Virtual Memory: used = {used_GB} GB, percent = {vm_stats.percent}%')
# get the peak memory to report correct data, so reset the counter for the next call
get_accelerator().reset_peak_memory_stats()
def call_to_str(base, *args, **kwargs):
"""Construct a string representation of a call.
Args:
base (str): name of the call
args (tuple, optional): args to ``base``
kwargs (dict, optional): kwargs supplied to ``base``
Returns:
str: A string representation of base(*args, **kwargs)
"""
name = f'{base}('
if args:
name += ', '.join(repr(arg) for arg in args)
if kwargs:
name += ', '
if kwargs:
name += ', '.join(f'{key}={repr(arg)}' for key, arg in kwargs.items())
name += ')'
return name
def get_only_unique_item(items):
item_set = set(items)
if len(item_set) != 1:
raise RuntimeError(f"expected there to be only one unique element in {items}")
unique_item, = item_set
return unique_item
def get_global_norm_of_tensors(input_tensors, norm_type=2, mpu=None, use_graph=False, moe_ep_group=None):
"""Get norm of an iterable of tensors.
This is adapted from torch.nn.utils.clip_grad.clip_grad_norm_ and
added functionality to handle model parallel parameters. Taken from Nvidia Megatron.
Arguments:
input_tensors (Iterable[Tensor]): an iterable of Tensors will have norm computed
norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
infinity norm.
Returns:
Total norm of the tensors (viewed as a single vector).
"""
assert isinstance(input_tensors, Iterable), f'expected Iterable type not {type(input_tensors)}'
assert all([torch.is_tensor(t) for t in input_tensors]), f'expected list of only tensors'
norm_type = float(norm_type)
all_norms = []
if norm_type == inf:
for t in input_tensors:
all_norms.append(t.data.abs().max().float())
total_norm = torch.stack(all_norms).max()
device_total_norm = total_norm.to(get_accelerator().current_device_name())
# Max across model parallel
if mpu is not None:
# For MoE grads, max over model parallel only if MoE-TP is enabled
if moe_ep_group is None or groups._get_expert_model_parallel_world_size() > 1:
dist.all_reduce(device_total_norm, op=dist.ReduceOp.MAX, group=mpu.get_model_parallel_group())
# If MoE grads and MoE-TP disabled, max over pipeline parallel
elif bwc_pipeline_parallel_world_size(mpu) > 1:
dist.all_reduce(device_total_norm, op=dist.ReduceOp.MAX, group=bwc_pipeline_parallel_group(mpu))
# MoE grads: max across expert parallel group
if moe_ep_group is not None:
dist.all_reduce(device_total_norm, op=dist.ReduceOp.MAX, group=moe_ep_group)
total_norm = device_total_norm.to(input_tensors[0].device)
else:
if 'norm_tensors_compute_buffer' not in graph_cache or len(
graph_cache['norm_tensors_compute_buffer']) != len(input_tensors):
graph_cache['norm_tensors_compute_buffer'] = [
torch.empty([], dtype=torch.float, device=get_accelerator().current_device_name())
for t in input_tensors
]
compute_buffer = graph_cache['norm_tensors_compute_buffer']
def _norm_tensors(tensor_list, _compute_buffer, _norm_type):
for i, t in enumerate(tensor_list):
_compute_buffer[i].data.copy_(t.data.float().norm(_norm_type)**_norm_type)
if i != 0:
_compute_buffer[0].data.add_(_compute_buffer[i].data)
if use_graph:
graph_process(False, _norm_tensors, input_tensors, compute_buffer, norm_type)
else:
_norm_tensors(input_tensors, compute_buffer, norm_type)
device_total_norm = compute_buffer[0].float().detach()
# Sum across model parallel
if mpu is not None:
# For MoE grads, sum over model parallel only if MoE-TP is enabled
if moe_ep_group is None or groups._get_expert_model_parallel_world_size() > 1:
dist.all_reduce(device_total_norm, op=dist.ReduceOp.SUM, group=mpu.get_model_parallel_group())
# If MoE grads and MoE-TP disabled, sum over pipeline parallel
elif bwc_pipeline_parallel_world_size(mpu) > 1:
dist.all_reduce(device_total_norm, op=dist.ReduceOp.SUM, group=bwc_pipeline_parallel_group(mpu))
# MoE grads: sum across expert parallel group
if moe_ep_group is not None:
dist.all_reduce(device_total_norm, op=dist.ReduceOp.SUM, group=moe_ep_group)
total_norm = device_total_norm.to(input_tensors[0].device).pow(1. / norm_type)
inf_or_nan = total_norm.isinf().logical_or(total_norm.isnan())
total_norm.masked_fill_(inf_or_nan, -1)
return total_norm
def clip_tensors_by_global_norm(input_tensors, max_norm=1.0, global_norm=None, mpu=None, eps=1e-6, use_graph=False):
"""Clip list of tensors by global norm.
Args:
input_tensors: List of tensors to be clipped
global_norm (float, optional): Precomputed norm. Defaults to None.
mpu (optional): model parallelism unit. Defaults to None.
eps (float, optional): epsilon value added to grad norm. Defaults to 1e-6
Returns:
float: the global norm
"""
if global_norm is None:
global_norm = get_global_norm_of_tensors(input_tensors, mpu=mpu, use_graph=use_graph)
clip_coef = max_norm / (global_norm + eps)
if clip_coef < 1:
if use_graph:
def clip_tensors(_tensor_list, _clip_coef_tensor):
for t in _tensor_list:
t.detach().mul_(_clip_coef_tensor)
if 'clip_coef_tensor' not in graph_cache:
# Alloc memory
graph_cache['clip_coef_tensor'] = torch.tensor(clip_coef,
dtype=torch.float32).to(get_accelerator().device_name())
clip_coef_tensor = graph_cache['clip_coef_tensor']
clip_coef_tensor.copy_(torch.tensor(clip_coef, dtype=torch.float32))
graph_process(False, clip_tensors, input_tensors, clip_coef_tensor)
else:
for t in input_tensors:
t.detach().mul_(clip_coef)
return global_norm
def align_dense_tensors(tensor_list, alignment):
num_elements = sum(t.numel() for t in tensor_list)
remaining = num_elements % alignment
if remaining:
elements_to_add = alignment - remaining
pad_tensor = torch.zeros(elements_to_add, device=tensor_list[0].device, dtype=tensor_list[0].dtype)
padded_tensor_list = tensor_list + [pad_tensor]
else:
padded_tensor_list = tensor_list
return padded_tensor_list
def all_gather_into_tensor_dp_groups(groups_flat, partitioned_param_groups, dp_process_group):
for group_id, (group_flat, partitioned_params) in enumerate(zip(groups_flat, partitioned_param_groups)):
partition_id = dist.get_rank(group=dp_process_group[group_id])
dp_world_size = dist.get_world_size(group=dp_process_group[group_id])
if dp_world_size == 1:
# no groups share optimizer states
# pipeline parallel with bf16 will default call this even if dp size = 1.
continue
dist.all_gather_into_tensor(group_flat, partitioned_params[partition_id], dp_process_group[group_id])
def all_gather_dp_groups(groups_flat, partitioned_param_groups, dp_process_group, start_alignment_factor,
allgather_bucket_size):
if dist.has_all_gather_into_tensor():
return all_gather_into_tensor_dp_groups(groups_flat, partitioned_param_groups, dp_process_group)
for group_id, partitioned_params in enumerate(partitioned_param_groups):
# Sequential AllGather Best of both worlds
partition_id = dist.get_rank(group=dp_process_group[group_id])
dp_world_size = dist.get_world_size(group=dp_process_group[group_id])
if dp_world_size == 1:
# no groups share optimizer states
# pipeline parallel with bf16 will default call this even if dp size = 1.
continue
num_shards = max(1, partitioned_params[partition_id].numel() * dp_world_size // allgather_bucket_size)
shard_size = partitioned_params[partition_id].numel() // num_shards
# Enforce nccl/rccl alignment of start location of each shard
shard_size = shard_size - (shard_size % start_alignment_factor)
num_elements = shard_size
assert shard_size * num_shards <= partitioned_params[partition_id].numel()
for shard_id in range(num_shards):
if shard_id == (num_shards - 1):
num_elements = partitioned_params[partition_id].numel() - shard_id * shard_size
shard_list = []
for dp_id in range(dp_world_size):
curr_shard = partitioned_params[dp_id].narrow(0, shard_id * shard_size, num_elements).detach()
shard_list.append(curr_shard)
dist.all_gather(shard_list, shard_list[partition_id], dp_process_group[group_id])
class TLinear(torch.nn.Linear):
def __init__(self, orig_layer, name=""):
self.name = name
super().__init__(orig_layer.weight.shape[1], orig_layer.weight.shape[0], bias=(orig_layer.bias is not None))
self.weight.data = transpose(orig_layer.weight.data)
self.bias = orig_layer.bias
self._fwd_func = self._fwd_bias_add if self.bias is not None else self._fwd
def _fwd(self, input):
return F.linear(input, self.weight)
def _fwd_bias_add(self, input):
return F.linear(input, self.weight, bias=self.bias)
def forward(self, input):
return self._fwd_func(input)
def get_inactive_params(param_list):
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
return [param for param in param_list if (hasattr(param, 'ds_id') and \
param.ds_status == ZeroParamStatus.NOT_AVAILABLE)]
def get_norm_with_moe_layers(non_expert_norm, mpu, expert_tensors, norm_type=2):
""" Compute the global norm with MoE experts
Inputs:
non_expert_norm (float) : the calculated norm of the non-expert params
expert_tensors (Dict[ep_name, List[Tensor]): Dictionary of expert group name to list of grad tensors
norm_type (int): the norm to use
Returns:
if norm is (-/+) inf, returns -1
otherwise the global norm (float)
"""
def to_tensor(v):
return get_accelerator().FloatTensor(float(v)).detach()
group_norms = [non_expert_norm]
for exp_name, tensors in expert_tensors.items():
group_norm = get_global_norm_of_tensors(input_tensors=tensors,
mpu=mpu,
norm_type=norm_type,
use_graph=False,
moe_ep_group=groups._get_expert_parallel_group(exp_name))
group_norms.append(group_norm)
# check if all norms are valid
group_norms = torch.stack([to_tensor(norm) for norm in group_norms])
if group_norms.eq(-1).any():
return -1
# combine norms
if norm_type == inf:
total_norm = group_norms.max().item()
else:
total_norm = group_norms.pow(norm_type).sum()
total_norm = total_norm.item()**(1. / norm_type)
if total_norm == float('inf') or total_norm == -float('inf'):
total_norm = -1
return total_norm