peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/nltk
/test
/unit
/test_hmm.py
import pytest | |
from nltk.tag import hmm | |
def _wikipedia_example_hmm(): | |
# Example from wikipedia | |
# (https://en.wikipedia.org/wiki/Forward%E2%80%93backward_algorithm) | |
states = ["rain", "no rain"] | |
symbols = ["umbrella", "no umbrella"] | |
A = [[0.7, 0.3], [0.3, 0.7]] # transition probabilities | |
B = [[0.9, 0.1], [0.2, 0.8]] # emission probabilities | |
pi = [0.5, 0.5] # initial probabilities | |
seq = ["umbrella", "umbrella", "no umbrella", "umbrella", "umbrella"] | |
seq = list(zip(seq, [None] * len(seq))) | |
model = hmm._create_hmm_tagger(states, symbols, A, B, pi) | |
return model, states, symbols, seq | |
def test_forward_probability(): | |
from numpy.testing import assert_array_almost_equal | |
# example from p. 385, Huang et al | |
model, states, symbols = hmm._market_hmm_example() | |
seq = [("up", None), ("up", None)] | |
expected = [[0.35, 0.02, 0.09], [0.1792, 0.0085, 0.0357]] | |
fp = 2 ** model._forward_probability(seq) | |
assert_array_almost_equal(fp, expected) | |
def test_forward_probability2(): | |
from numpy.testing import assert_array_almost_equal | |
model, states, symbols, seq = _wikipedia_example_hmm() | |
fp = 2 ** model._forward_probability(seq) | |
# examples in wikipedia are normalized | |
fp = (fp.T / fp.sum(axis=1)).T | |
wikipedia_results = [ | |
[0.8182, 0.1818], | |
[0.8834, 0.1166], | |
[0.1907, 0.8093], | |
[0.7308, 0.2692], | |
[0.8673, 0.1327], | |
] | |
assert_array_almost_equal(wikipedia_results, fp, 4) | |
def test_backward_probability(): | |
from numpy.testing import assert_array_almost_equal | |
model, states, symbols, seq = _wikipedia_example_hmm() | |
bp = 2 ** model._backward_probability(seq) | |
# examples in wikipedia are normalized | |
bp = (bp.T / bp.sum(axis=1)).T | |
wikipedia_results = [ | |
# Forward-backward algorithm doesn't need b0_5, | |
# so .backward_probability doesn't compute it. | |
# [0.6469, 0.3531], | |
[0.5923, 0.4077], | |
[0.3763, 0.6237], | |
[0.6533, 0.3467], | |
[0.6273, 0.3727], | |
[0.5, 0.5], | |
] | |
assert_array_almost_equal(wikipedia_results, bp, 4) | |
def setup_module(module): | |
pytest.importorskip("numpy") | |