applied-ai-018's picture
Add files using upload-large-folder tool
179036e verified
raw
history blame
16.5 kB
#!/usr/bin/env python
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
from functools import partial
from itertools import chain
import argparse
import glob
import itertools
from concurrent.futures import ProcessPoolExecutor
import os
import re
import shutil
import torch
import tqdm
#from pprint import pprint
from deepspeed.checkpoint import DeepSpeedCheckpoint
from deepspeed.checkpoint import (
OPTIMIZER_STATE_DICT,
BASE_OPTIMIZER_STATE,
SINGLE_PARTITION_OF_FP32_GROUPS,
PARAM_GROUPS,
PARAM_SLICE_MAPPINGS,
PARAM_SHAPES,
PARAM,
CAT_DIM,
PARAM_N_SUB_PARAMS,
SUB_PARAM_SHAPE,
VOCAB_TENSOR,
UNIVERSAL_CHECKPOINT_INFO,
VOCABULARY_PARAMETER_PATTERNS,
PIPELINE_REPLICATED_PARAMETER_PATTERNS,
TP_REPLICATED_PARAMETER_PATTERNS,
PARAMETER_TO_AVERAGE_PATTERNS,
PARAMETER_WITH_ROW_PARALLELISM_PATTERNS,
PARAMETER_WITH_2_SUB_PARAMS_CAT_DIM_0,
PARAMETER_WITH_SUB_PARAMS,
SubparamShape,
)
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--input_folder', type=str, required=True, help='Input DeepSpeed Checkpoint folder')
parser.add_argument('--output_folder', type=str, required=True, help='Output DeepSpeed checkpoint folder')
parser.add_argument('--num_extract_workers',
default=4,
type=int,
help='How many parallel processes to extract zero shards')
parser.add_argument(
'--num_merge_workers',
default=2,
type=int,
help=
'How many parallel processes to merge tp slices (more memory intensive, use much fewer than --num_extract_workers))'
)
parser.add_argument('--keep_temp_folder',
action='store_true',
help='Preserve temporary folder of intermediate checkpoint slice files. Useful for debugging.')
parser.add_argument('--no_strict',
dest='strict',
action='store_false',
help='Do not perform validity checks on converted checkpoint.')
args = parser.parse_args()
print(f'args = {args}')
return args
def _create_checkpoint_paths(base_folder, iteration, tp_degree, pp_degree):
path_list = []
iter_folder = f'iter_{iteration:07d}'
for i in range(0, tp_degree):
path_list.append([])
for j in range(0, pp_degree):
rank_folder = f'mp_rank_{i:02d}' if pp_degree == 1 else f'mp_rank_{i:02d}_{j:03d}'
ckpt_path = os.path.join(rank_folder, 'model_optim_rng.pt')
path_list[i].append(os.path.join(base_folder, iter_folder, ckpt_path))
return path_list
def _save_checkpoint(file_path, chkpt_sd):
dir, _ = os.path.split(file_path)
os.makedirs(dir, exist_ok=True)
torch.save(chkpt_sd, file_path)
def extract_zero_shards(dir, ds_checkpoint, indices_3D):
pp_index, tp_index, dp_index = indices_3D
sd = ds_checkpoint.get_zero_checkpoint_state(pp_index=pp_index, tp_index=tp_index, dp_index=dp_index)
# pprint(f"Processing {dp_index=} {pp_index=}, {tp_index=}")
optim_sd = sd[OPTIMIZER_STATE_DICT]
param_slice_mappings = optim_sd[PARAM_SLICE_MAPPINGS]
universal_checkpoint_info = ds_checkpoint.get_checkpoint_info(UNIVERSAL_CHECKPOINT_INFO)
pipeline_replicated_params = universal_checkpoint_info.get(PIPELINE_REPLICATED_PARAMETER_PATTERNS, [])
# print(f'{pipeline_replicated_params=}')
# dict
state_groups = optim_sd[BASE_OPTIMIZER_STATE]["state"]
# list
fp32_groups = optim_sd[SINGLE_PARTITION_OF_FP32_GROUPS]
param_groups_cnt = len(state_groups)
for param_group_id in range(param_groups_cnt):
flat_state = dict(
exp_avg=state_groups[param_group_id]["exp_avg"],
exp_avg_sq=state_groups[param_group_id]["exp_avg_sq"],
fp32=fp32_groups[param_group_id],
)
if "step" in state_groups[param_group_id]:
flat_state["step"] = state_groups[param_group_id]["step"]
for name, fragment_mapping in param_slice_mappings[param_group_id].items():
if pp_index > 0 and any(re.match(pattern, name) for pattern in pipeline_replicated_params):
# Skip tied weights that are replicated in first and last pp stages
continue
# pprint(f"dpt{dp_index}{pp_index}{tp_index} {param_group_id} {name} => {fragment_mapping.start}:{fragment_mapping.numel}")
for state_key in flat_state.keys():
dump_param_fragment(dir, tp_index, dp_index, state_key, flat_state[state_key], name,
fragment_mapping.start, fragment_mapping.numel)
cnt = 0
def dp_index_to_str(dp_index):
return f"{dp_index:0>2d}"
def dump_param_fragment(dir, tp_index, dp_index, state_name, state_flat_tensor, param_name, offset, numel):
global cnt # temp hack
param_base_path = os.path.join(dir, param_name, str(tp_index))
os.makedirs(param_base_path, exist_ok=True)
cnt += 1
path = os.path.join(param_base_path, f"{state_name}.{dp_index_to_str(dp_index)}")
#print(f"{param_name}: {offset}: {numel} => {path}")
# State might be a python int or a tensor
if state_name != "step" and torch.is_tensor(state_flat_tensor):
state_flat_tensor = state_flat_tensor.narrow(0, offset, numel).clone()
_save_checkpoint(path, state_flat_tensor)
def _merge_zero_shards(param_base_path, state, tp_degree, slice_shape):
slices = []
for tp_index in range(tp_degree):
prefix_path = os.path.join(param_base_path, str(tp_index), f"{state}")
paths = glob.glob(f"{prefix_path}.*")
if len(paths) == 0:
continue
pattern = re.compile(f"{prefix_path}\\.([0-9]+)")
dp_indices = set()
for p in paths:
m = pattern.match(p)
if m:
dp_indices.add(int(m.group(1)))
else:
raise ValueError(f"Cannot parse dp_rank from {p}")
paths = [f"{prefix_path}.{dp_index_to_str(dp_index)}" for dp_index in sorted(list(dp_indices))]
shards = [torch.load(p) for p in paths]
if state == "step":
assert all(v == shards[0] for v in shards), "All shards must have the same step value"
slice = shards[0]
else:
slice = torch.cat(shards, dim=0).reshape(slice_shape)
slices.append(slice)
return slices
def merge_tp_slices(ds_checkpoint, dir, slice_dir, tp_degree, name_and_shape):
name, shape = name_and_shape
slice_base_path = os.path.join(slice_dir, name)
param_base_path = os.path.join(dir, name)
universal_checkpoint_info = ds_checkpoint.get_checkpoint_info(UNIVERSAL_CHECKPOINT_INFO)
replicated_parameters = universal_checkpoint_info.get(TP_REPLICATED_PARAMETER_PATTERNS, [])
parameters_to_average = universal_checkpoint_info.get(PARAMETER_TO_AVERAGE_PATTERNS, [])
parameters_with_row_parallelism = universal_checkpoint_info.get(PARAMETER_WITH_ROW_PARALLELISM_PATTERNS, [])
vocabulary_parameters = universal_checkpoint_info.get(VOCABULARY_PARAMETER_PATTERNS, [])
parameters_with_2_sub_params_cat_dim_0 = universal_checkpoint_info.get(PARAMETER_WITH_2_SUB_PARAMS_CAT_DIM_0, [])
parameter_with_sub_params = universal_checkpoint_info.get(PARAMETER_WITH_SUB_PARAMS, [])
unmatched_patterns = set(replicated_parameters + parameters_to_average + parameters_with_row_parallelism +
vocabulary_parameters + parameters_with_2_sub_params_cat_dim_0)
unmatched_patterns.update(chain.from_iterable(SubparamShape(**s).patterns for s in parameter_with_sub_params))
def get_matched_pattern(patterns_, name_):
matched_ = [pattern_ for pattern_ in patterns_ if re.match(pattern_, name_)]
assert len(matched_) <= 1, f'Got more than one matching patterns={matched_} for {name_}'
if matched_:
pattern_ = matched_[0]
unmatched_patterns.discard(pattern_)
return pattern_
return None
def get_matched_sub_params_pattern(name_):
for subparam_shape_dict in parameter_with_sub_params:
subparam_shape = SubparamShape(**subparam_shape_dict)
for pattern_ in subparam_shape.patterns:
if re.match(pattern_, name_):
unmatched_patterns.discard(pattern_)
return subparam_shape
return None
matched_sub_params_shape = get_matched_sub_params_pattern(name)
step_merged = _merge_zero_shards(slice_base_path, "step", tp_degree, shape)
if step_merged:
_save_checkpoint(os.path.join(param_base_path, f"step.pt"), step_merged[0])
for state in ("fp32", "exp_avg", "exp_avg_sq"):
slices = _merge_zero_shards(slice_base_path, state, tp_degree, shape)
final_path = os.path.join(param_base_path, f"{state}.pt")
#print(f"Expected shape: {shape}")
#print(f"Fragment sizes:", list(frag.shape for frag in slices))
ckpt_dict = {}
if get_matched_pattern(replicated_parameters, name):
if len(slices) > 1:
assert all([slices[0].equal(other_slice) for other_slice in slices[1:]])
param = slices[0]
# print(f'replicate {name} using first slice')
elif get_matched_pattern(parameters_to_average, name):
param = sum(slices) / len(slices)
# print(f'merge {name} using average')
elif get_matched_pattern(parameters_with_2_sub_params_cat_dim_0, name):
cat_dim = 0
chunked_slices = [torch.chunk(s, 2, dim=cat_dim) for s in slices]
merged_chunks_0 = torch.cat([s[0] for s in chunked_slices], dim=cat_dim)
merged_chunks_1 = torch.cat([s[1] for s in chunked_slices], dim=cat_dim)
param = torch.cat([merged_chunks_0, merged_chunks_1], dim=cat_dim)
ckpt_dict[CAT_DIM] = cat_dim
ckpt_dict[PARAM_N_SUB_PARAMS] = 2
elif matched_sub_params_shape:
merged_chunks = []
partition_dim = matched_sub_params_shape.partition_dim
sub_dim_sizes = matched_sub_params_shape.shape[partition_dim]
if not isinstance(sub_dim_sizes, tuple):
sub_dim_sizes = (sub_dim_sizes, )
partition_shape = [sum(d) if isinstance(d, tuple) else d for d in matched_sub_params_shape.shape]
partition_shape = [d // tp_degree if i == partition_dim else d for i, d in enumerate(partition_shape)]
slices = [s.view(partition_shape) for s in slices]
offset = 0
for sub_dim_size in sub_dim_sizes:
part_sub_dim_size = sub_dim_size // tp_degree
merged_chunks.append(
torch.cat([s.narrow(partition_dim, offset, part_sub_dim_size) for s in slices], dim=partition_dim))
offset += part_sub_dim_size
param = torch.cat(merged_chunks, dim=partition_dim)
ckpt_dict[SUB_PARAM_SHAPE] = matched_sub_params_shape
else:
cat_dim = 1 if get_matched_pattern(parameters_with_row_parallelism, name) else 0
# print(f"merge {name} with CAT DIM: {cat_dim}")
param = torch.cat(slices, dim=cat_dim)
ckpt_dict[CAT_DIM] = cat_dim
if get_matched_pattern(vocabulary_parameters, name):
#print(f"Before {param.shape=}")
# strip padding
original_vocab_size = universal_checkpoint_info['original_vocab_size']
param = param[:original_vocab_size, :]
ckpt_dict[VOCAB_TENSOR] = True
#print(f"After {param.shape=}")
#print(f"Final shape: {param.shape}")
ckpt_dict[PARAM] = param
_save_checkpoint(final_path, ckpt_dict)
return unmatched_patterns
def _do_parallel_work(do_work, work_chunks, num_workers):
results = []
if num_workers > 1:
with ProcessPoolExecutor(max_workers=num_workers) as executor:
future_list = [executor.submit(do_work, work) for work in work_chunks]
for f in tqdm.tqdm(future_list):
results.append(f.result())
else:
# No parallel pass for unit testing
# We can't create child processes in tests
for work in tqdm.tqdm(work_chunks):
results.append(do_work(work))
return results
def _extract_zero_shard_files(args, ds_checkpoint, temp_dir):
_3d_range_list = list(
itertools.product(range(ds_checkpoint.pp_degree), range(ds_checkpoint.tp_degree),
range(ds_checkpoint.dp_degree)))
#pprint(f'{_3d_range_list=}')
do_work = partial(extract_zero_shards, temp_dir, ds_checkpoint)
_do_parallel_work(do_work, _3d_range_list, args.num_extract_workers)
def _merge_tp_slice_files(args, ds_checkpoint, slice_shapes, temp_dir):
zero_output_folder = os.path.join(args.output_folder, "zero")
do_work = partial(merge_tp_slices, ds_checkpoint, zero_output_folder, temp_dir, ds_checkpoint.tp_degree)
unmatched_patterns_lists = _do_parallel_work(do_work, list(slice_shapes.items()), args.num_merge_workers)
# verify that all patterns were used
# if a pattern was not used by any of the workers, then it was not used at all -> assert/alert
sets = [set(lst) for lst in unmatched_patterns_lists]
unmatched_patterns = list(set.intersection(*sets))
if args.strict:
assert not unmatched_patterns, f'Unused patterns={unmatched_patterns} while merging tp slices'
elif unmatched_patterns:
print(f'Warning: Unused patterns={unmatched_patterns} while merging tp slices')
def _save_optimizer_state(args, ds_checkpoint):
sharded_states = [BASE_OPTIMIZER_STATE, PARAM_SLICE_MAPPINGS, SINGLE_PARTITION_OF_FP32_GROUPS]
sd = ds_checkpoint.get_zero_checkpoint_state(pp_index=0, tp_index=0, dp_index=0)
optim_sd = sd[OPTIMIZER_STATE_DICT]
output_sd = {k: v for k, v in optim_sd.items() if k not in sharded_states}
output_sd[PARAM_GROUPS] = optim_sd[BASE_OPTIMIZER_STATE][PARAM_GROUPS]
zero_output_folder = os.path.join(args.output_folder, "zero")
output_file_path = os.path.join(zero_output_folder, f"optimizer_state.pt")
_save_checkpoint(output_file_path, output_sd)
def _check_for_required_state(ds_checkpoint):
universal_checkpoint_info = ds_checkpoint.get_checkpoint_info(UNIVERSAL_CHECKPOINT_INFO)
assert universal_checkpoint_info is not None, f'Required {UNIVERSAL_CHECKPOINT_INFO} state is missing in checkpoint. Verify that client creates this state.'
def main(args):
print(f'Convert DeepSpeed Checkpoint to Universal Checkpoint')
print(f'Converting DeepSpeed checkpoint in {args.input_folder} to Universal checkpoint in {args.output_folder}')
ds_checkpoint = DeepSpeedCheckpoint(args.input_folder)
_check_for_required_state(ds_checkpoint)
iteration = ds_checkpoint.get_iteration()
#_create_latest_file(args.output_folder, iteration)
checkpoint_paths = _create_checkpoint_paths(args.output_folder, iteration, ds_checkpoint.tp_degree,
ds_checkpoint.pp_degree)
slice_shapes = []
for mp_rank_file in ds_checkpoint.mp_rank_files:
mp_sd = torch.load(mp_rank_file, map_location=torch.device('cpu'))
slice_shapes += mp_sd[PARAM_SHAPES]
# fix back to normal flat dict, merge duplicates for tp>1
slice_shapes = dict((k, v) for d in slice_shapes for k, v in d.items())
temp_dir = os.path.join(args.output_folder, 'tmp')
print('*** 1. Extracting ZeRO fragments')
_extract_zero_shard_files(args, ds_checkpoint, temp_dir)
print('*** 2. Merging slices .....')
_merge_tp_slice_files(args, ds_checkpoint, slice_shapes, temp_dir)
print('*** 3. Saving common optimizer states')
_save_optimizer_state(args, ds_checkpoint)
if not args.keep_temp_folder:
shutil.rmtree(temp_dir, ignore_errors=True)
# Copy mp* files into output folder
for f in glob.glob(os.path.join(args.input_folder, 'mp*')):
shutil.copy2(f, args.output_folder)
# Update latest to output folder
checkpoint_root_folder, step_folder = os.path.split(args.output_folder)
latest_file = os.path.join(checkpoint_root_folder, 'latest_universal')
with open(latest_file, "w") as f:
f.write(step_folder)
print('*** Done!')
if __name__ == "__main__":
args = parse_arguments()
main(args)