applied-ai-018's picture
Add files using upload-large-folder tool
179036e verified
raw
history blame
3.46 kB
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import os
import re
import torch
from collections import OrderedDict
from .constants import (ZERO_FILE_PREFIX, FP16_ZERO_FILE_PREFIX, BF16_ZERO_FILE_PREFIX, MODEL_FILE_PREFIX)
def basic_folder_validation(dir):
assert os.path.exists(dir), f'{dir} path does not exist'
assert os.path.isdir(dir), f'{dir} is not a folder'
def get_files_with_prefix(all_files, prefix):
file_list = []
for file_path in all_files:
_, fname = os.path.split(file_path)
if fname.startswith(prefix):
file_list.append(file_path)
return sorted(file_list)
def validate_files(file_list):
for file in file_list:
if not os.path.isfile(file):
print(f'Error: {file} is not existent')
def get_files(dir):
file_list = []
for root, _, files in os.walk(dir):
for file in files:
file_list.append(os.path.join(root, file))
return file_list
def sort_zero_files(files, prefix):
pattern = f"{prefix}([0-9]+)_{MODEL_FILE_PREFIX}([0-9]+)"
rank_pairs = []
for f in files:
m = re.search(pattern, f)
if m:
dp_rank = int(m.group(1))
mp_rank = int(m.group(2))
rank_pairs.append((dp_rank, mp_rank, f))
else:
raise ValueError(f"Cannot parse dp_rank and mp_rank from {f}")
sorted_files = sorted(rank_pairs, key=lambda x: (x[0], x[1]))
return [f for _, _, f in sorted_files]
def get_zero_files(dir):
file_list = get_files(dir)
for prefix in [ZERO_FILE_PREFIX, FP16_ZERO_FILE_PREFIX, BF16_ZERO_FILE_PREFIX]:
zero_files = get_files_with_prefix(file_list, prefix)
if len(zero_files) > 0:
return sort_zero_files(zero_files, prefix)
return []
def partition_data(data_list, num_partitions):
num_elems = len(data_list)
assert num_elems % num_partitions == 0
partition_size = num_elems // num_partitions
partitions_list = [data_list[i:i + partition_size] for i in range(0, num_elems, partition_size)]
return partitions_list
def _key_list_to_string(key_list):
return '.'.join(key_list)
def merge_state_dict(dict_a, dict_b, key_list):
merged_dict = type(dict_a)({})
for key, value in dict_b.items():
if key in dict_a.keys():
merged_dict[key] = merge_state(dict_a[key], dict_b[key], [str(key)])
else:
merged_dict[key] = value
return merged_dict
def merge_state_list(list_a, list_b, key_list):
if len(list_a) != len(list_b):
print(f'{_key_list_to_string(key_list)}')
raise ValueError(f'Cannot merge lists of different lengths, a = {len(list_a)} b = {len(list_b)}')
return [merge_state(a, b, key_list) for a, b in zip(list_a, list_b)]
def merge_state(state_a, state_b, key_list=[]):
if type(state_a) != type(state_b):
key_list_string = _key_list_to_string(key_list)
print(f'key_list = {key_list_string}')
raise ValueError(f'Cannot merge two states of types {type(state_a)} and type {type(state_b)}')
if type(state_a) in (dict, OrderedDict):
return merge_state_dict(state_a, state_b, key_list)
elif type(state_a) in (list, tuple):
return type(state_a)(merge_state_list(state_a, state_b, key_list))
elif torch.is_tensor(state_a):
return torch.cat([state_a, state_b], 0)
else:
return state_a