applied-ai-018's picture
Add files using upload-large-folder tool
179036e verified
raw
history blame
6.77 kB
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import os
import re
import torch
import types
from typing import List, Tuple, Union
from dataclasses import dataclass
from .constants import (FP32_WEIGHT_KEY, PARAM, VOCAB_TENSOR, CAT_DIM, PARAM_N_SUB_PARAMS, SUB_PARAM_SHAPE)
@dataclass
class SubparamShape:
patterns: List[str]
shape: Tuple[Union[Tuple[int], int]]
partition_dim: int
def load_hp_checkpoint_state(self, folder, tp_rank, tp_world_size):
hp_mapping = self._hp_mapping
hp_mapping.optim_fragment = {}
hp_keys = []
for file in os.listdir(folder):
# We expect files named something like "exp_avg.pt", "exp_avg_sq.pt", "fp32.pt"
pattern = r'(.+).pt'
match = re.search(pattern, file)
if match:
hp_keys.append(match.group(1))
step = None
for key in hp_keys:
ckpt_file = os.path.join(folder, f"{key}.pt")
ckpt_dict = torch.load(ckpt_file)
if key == "step":
step = ckpt_dict
continue
full_hp_param = ckpt_dict[PARAM]
# need to deal with slices that were averaged.
# the opposite of averaging here becomes an exact copy of the first slice
# I thought of 2 ways:
# implementation a. find a way for a client to pass a dict with patterns
# if any(re.search(pattern, folder) for pattern in WEIGHTS_TO_AVERAGE_PATTERNS):
# tp_rank = 0
# tp_world_size = 1
# the other approach is to assume that the saved data is correct and if full_hp_param.shape ==
# self.shape that means we automatically copy?
# implementation b.
# this version requires no additional data passed from the client
# if the shapes already match it must be slices that were averaged - so we just hack around those
if full_hp_param.shape == self.shape:
tp_rank = 0
tp_world_size = 1
# special case for word_embeddings weights which get padded differently depending on TP degree.
# the converter to universal currently strips the original padding completely so the saved
# weight is padding-free and we just need to add new padding depending on the target TP
# degree
is_vocab_tensor = ckpt_dict.get(VOCAB_TENSOR, False)
if is_vocab_tensor:
# In the absence of data passed from the user wrt new padded vocab specific to tp degree
# we can again derive that data by reverse engineering the target shapes like so:
padded_target_vocab_size = self.shape[0] * tp_world_size
assert padded_target_vocab_size >= full_hp_param.shape[0], \
f'Vocab tensor padded size {padded_target_vocab_size} < loaded universal size {full_hp_param.shape[0]}'
if padded_target_vocab_size > full_hp_param.shape[0]:
padding_size = padded_target_vocab_size - full_hp_param.shape[0]
full_hp_param = torch.nn.functional.pad(full_hp_param, (0, 0, 0, padding_size), "constant", 0)
full_param_numel = full_hp_param.numel()
tp_slice_numel = self.numel()
# if key == FP32_WEIGHT_KEY and 'word_embeddings.weight' in folder:
# print_rank_0(f'{full_hp_param[:10]=}', force=True)
assert full_param_numel == tp_world_size * tp_slice_numel, \
f'Loading {ckpt_file} full param numel {full_param_numel} != tensor slice numel {tp_slice_numel} * tp_world_size {tp_world_size}'
# print(f"{full_hp_param.shape=} {full_param_numel=} {folder=}")
# print(f"{dst_tensor.shape=} {dst_tensor.numel()=}{folder=}")
sub_param_shape = ckpt_dict.get(SUB_PARAM_SHAPE, None)
# since when we do many to 1 on tp we cat sometimes on dim=0 and other times on dim=1 we have to do exactly the same in reverse
# special case is when a single parameter is effectively a container for multiple sub parameters
# (more details at PARAM_N_SUB_PARAMS definition)
chunk_dim = ckpt_dict.get(CAT_DIM, 0)
n_sub_params = ckpt_dict.get(PARAM_N_SUB_PARAMS, 1)
if sub_param_shape:
partition_dim = sub_param_shape.partition_dim
sub_dim_sizes = sub_param_shape.shape[partition_dim]
if not isinstance(sub_dim_sizes, tuple):
sub_dim_sizes = (sub_dim_sizes, )
partition_shape = [sum(d) if isinstance(d, tuple) else d for d in sub_param_shape.shape]
full_hp_param = full_hp_param.view(partition_shape)
offset = 0
merged_chunks = []
for sub_dim_size in sub_dim_sizes:
sub_params_tp_slice = full_hp_param.narrow(partition_dim,
offset, sub_dim_size).chunk(tp_world_size,
dim=partition_dim)[tp_rank]
merged_chunks.append(sub_params_tp_slice)
offset += sub_dim_size
tp_hp_slice = torch.cat(merged_chunks, dim=partition_dim)
elif n_sub_params > 1:
sub_params = full_hp_param.chunk(n_sub_params, dim=chunk_dim)
sub_params_tp_slice = [p.chunk(tp_world_size, dim=chunk_dim)[tp_rank] for p in sub_params]
tp_hp_slice = torch.cat(sub_params_tp_slice, dim=chunk_dim)
else:
# this performs the opposite of cat when merging TP slices
tp_hp_slice = full_hp_param.chunk(tp_world_size, chunk_dim)[tp_rank]
tp_hp_slice = tp_hp_slice.flatten()
lp_frag_address = hp_mapping.lp_fragment_address
tp_hp_fragment = tp_hp_slice.narrow(0, lp_frag_address.start, lp_frag_address.numel)
# print(f"{key} SHAPE: {tp_hp_slice.shape=}")
# print(f"{key} SHAPE: {dst_tensor.shape=}")
# print(f"{key} SHAPE: {tp_hp_fragment.shape=}")
if key == FP32_WEIGHT_KEY:
dst_tensor = hp_mapping.get_hp_fragment()
assert dst_tensor.numel() == lp_frag_address.numel, \
f'Load checkpoint {key} dst numel {dst_tensor.numel()} != src numel {lp_frag_address.numel}'
dst_tensor.data.copy_(tp_hp_fragment.data)
else:
assert tp_hp_fragment.numel() == lp_frag_address.numel, \
f'Load checkpoint {key} dst numel {tp_hp_fragment.numel()} != src numel {lp_frag_address.numel}'
hp_mapping.optim_fragment[key] = tp_hp_fragment.clone().detach()
return step
def enable_universal_checkpoint(param_list):
for param in param_list:
param.load_hp_checkpoint_state = types.MethodType(load_hp_checkpoint_state, param)