peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/linalg
/_matfuncs.py
# | |
# Author: Travis Oliphant, March 2002 | |
# | |
from itertools import product | |
import numpy as np | |
from numpy import (dot, diag, prod, logical_not, ravel, transpose, | |
conjugate, absolute, amax, sign, isfinite, triu) | |
# Local imports | |
from scipy.linalg import LinAlgError, bandwidth | |
from ._misc import norm | |
from ._basic import solve, inv | |
from ._decomp_svd import svd | |
from ._decomp_schur import schur, rsf2csf | |
from ._expm_frechet import expm_frechet, expm_cond | |
from ._matfuncs_sqrtm import sqrtm | |
from ._matfuncs_expm import pick_pade_structure, pade_UV_calc | |
# deprecated imports to be removed in SciPy 1.13.0 | |
from numpy import single # noqa: F401 | |
__all__ = ['expm', 'cosm', 'sinm', 'tanm', 'coshm', 'sinhm', 'tanhm', 'logm', | |
'funm', 'signm', 'sqrtm', 'fractional_matrix_power', 'expm_frechet', | |
'expm_cond', 'khatri_rao'] | |
eps = np.finfo('d').eps | |
feps = np.finfo('f').eps | |
_array_precision = {'i': 1, 'l': 1, 'f': 0, 'd': 1, 'F': 0, 'D': 1} | |
############################################################################### | |
# Utility functions. | |
def _asarray_square(A): | |
""" | |
Wraps asarray with the extra requirement that the input be a square matrix. | |
The motivation is that the matfuncs module has real functions that have | |
been lifted to square matrix functions. | |
Parameters | |
---------- | |
A : array_like | |
A square matrix. | |
Returns | |
------- | |
out : ndarray | |
An ndarray copy or view or other representation of A. | |
""" | |
A = np.asarray(A) | |
if len(A.shape) != 2 or A.shape[0] != A.shape[1]: | |
raise ValueError('expected square array_like input') | |
return A | |
def _maybe_real(A, B, tol=None): | |
""" | |
Return either B or the real part of B, depending on properties of A and B. | |
The motivation is that B has been computed as a complicated function of A, | |
and B may be perturbed by negligible imaginary components. | |
If A is real and B is complex with small imaginary components, | |
then return a real copy of B. The assumption in that case would be that | |
the imaginary components of B are numerical artifacts. | |
Parameters | |
---------- | |
A : ndarray | |
Input array whose type is to be checked as real vs. complex. | |
B : ndarray | |
Array to be returned, possibly without its imaginary part. | |
tol : float | |
Absolute tolerance. | |
Returns | |
------- | |
out : real or complex array | |
Either the input array B or only the real part of the input array B. | |
""" | |
# Note that booleans and integers compare as real. | |
if np.isrealobj(A) and np.iscomplexobj(B): | |
if tol is None: | |
tol = {0: feps*1e3, 1: eps*1e6}[_array_precision[B.dtype.char]] | |
if np.allclose(B.imag, 0.0, atol=tol): | |
B = B.real | |
return B | |
############################################################################### | |
# Matrix functions. | |
def fractional_matrix_power(A, t): | |
""" | |
Compute the fractional power of a matrix. | |
Proceeds according to the discussion in section (6) of [1]_. | |
Parameters | |
---------- | |
A : (N, N) array_like | |
Matrix whose fractional power to evaluate. | |
t : float | |
Fractional power. | |
Returns | |
------- | |
X : (N, N) array_like | |
The fractional power of the matrix. | |
References | |
---------- | |
.. [1] Nicholas J. Higham and Lijing lin (2011) | |
"A Schur-Pade Algorithm for Fractional Powers of a Matrix." | |
SIAM Journal on Matrix Analysis and Applications, | |
32 (3). pp. 1056-1078. ISSN 0895-4798 | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import fractional_matrix_power | |
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]]) | |
>>> b = fractional_matrix_power(a, 0.5) | |
>>> b | |
array([[ 0.75592895, 1.13389342], | |
[ 0.37796447, 1.88982237]]) | |
>>> np.dot(b, b) # Verify square root | |
array([[ 1., 3.], | |
[ 1., 4.]]) | |
""" | |
# This fixes some issue with imports; | |
# this function calls onenormest which is in scipy.sparse. | |
A = _asarray_square(A) | |
import scipy.linalg._matfuncs_inv_ssq | |
return scipy.linalg._matfuncs_inv_ssq._fractional_matrix_power(A, t) | |
def logm(A, disp=True): | |
""" | |
Compute matrix logarithm. | |
The matrix logarithm is the inverse of | |
expm: expm(logm(`A`)) == `A` | |
Parameters | |
---------- | |
A : (N, N) array_like | |
Matrix whose logarithm to evaluate | |
disp : bool, optional | |
Print warning if error in the result is estimated large | |
instead of returning estimated error. (Default: True) | |
Returns | |
------- | |
logm : (N, N) ndarray | |
Matrix logarithm of `A` | |
errest : float | |
(if disp == False) | |
1-norm of the estimated error, ||err||_1 / ||A||_1 | |
References | |
---------- | |
.. [1] Awad H. Al-Mohy and Nicholas J. Higham (2012) | |
"Improved Inverse Scaling and Squaring Algorithms | |
for the Matrix Logarithm." | |
SIAM Journal on Scientific Computing, 34 (4). C152-C169. | |
ISSN 1095-7197 | |
.. [2] Nicholas J. Higham (2008) | |
"Functions of Matrices: Theory and Computation" | |
ISBN 978-0-898716-46-7 | |
.. [3] Nicholas J. Higham and Lijing lin (2011) | |
"A Schur-Pade Algorithm for Fractional Powers of a Matrix." | |
SIAM Journal on Matrix Analysis and Applications, | |
32 (3). pp. 1056-1078. ISSN 0895-4798 | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import logm, expm | |
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]]) | |
>>> b = logm(a) | |
>>> b | |
array([[-1.02571087, 2.05142174], | |
[ 0.68380725, 1.02571087]]) | |
>>> expm(b) # Verify expm(logm(a)) returns a | |
array([[ 1., 3.], | |
[ 1., 4.]]) | |
""" | |
A = _asarray_square(A) | |
# Avoid circular import ... this is OK, right? | |
import scipy.linalg._matfuncs_inv_ssq | |
F = scipy.linalg._matfuncs_inv_ssq._logm(A) | |
F = _maybe_real(A, F) | |
errtol = 1000*eps | |
# TODO use a better error approximation | |
errest = norm(expm(F)-A, 1) / norm(A, 1) | |
if disp: | |
if not isfinite(errest) or errest >= errtol: | |
print("logm result may be inaccurate, approximate err =", errest) | |
return F | |
else: | |
return F, errest | |
def expm(A): | |
"""Compute the matrix exponential of an array. | |
Parameters | |
---------- | |
A : ndarray | |
Input with last two dimensions are square ``(..., n, n)``. | |
Returns | |
------- | |
eA : ndarray | |
The resulting matrix exponential with the same shape of ``A`` | |
Notes | |
----- | |
Implements the algorithm given in [1], which is essentially a Pade | |
approximation with a variable order that is decided based on the array | |
data. | |
For input with size ``n``, the memory usage is in the worst case in the | |
order of ``8*(n**2)``. If the input data is not of single and double | |
precision of real and complex dtypes, it is copied to a new array. | |
For cases ``n >= 400``, the exact 1-norm computation cost, breaks even with | |
1-norm estimation and from that point on the estimation scheme given in | |
[2] is used to decide on the approximation order. | |
References | |
---------- | |
.. [1] Awad H. Al-Mohy and Nicholas J. Higham, (2009), "A New Scaling | |
and Squaring Algorithm for the Matrix Exponential", SIAM J. Matrix | |
Anal. Appl. 31(3):970-989, :doi:`10.1137/09074721X` | |
.. [2] Nicholas J. Higham and Francoise Tisseur (2000), "A Block Algorithm | |
for Matrix 1-Norm Estimation, with an Application to 1-Norm | |
Pseudospectra." SIAM J. Matrix Anal. Appl. 21(4):1185-1201, | |
:doi:`10.1137/S0895479899356080` | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import expm, sinm, cosm | |
Matrix version of the formula exp(0) = 1: | |
>>> expm(np.zeros((3, 2, 2))) | |
array([[[1., 0.], | |
[0., 1.]], | |
<BLANKLINE> | |
[[1., 0.], | |
[0., 1.]], | |
<BLANKLINE> | |
[[1., 0.], | |
[0., 1.]]]) | |
Euler's identity (exp(i*theta) = cos(theta) + i*sin(theta)) | |
applied to a matrix: | |
>>> a = np.array([[1.0, 2.0], [-1.0, 3.0]]) | |
>>> expm(1j*a) | |
array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j], | |
[ 1.06860742+0.48905626j, -1.71075555+0.91406299j]]) | |
>>> cosm(a) + 1j*sinm(a) | |
array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j], | |
[ 1.06860742+0.48905626j, -1.71075555+0.91406299j]]) | |
""" | |
a = np.asarray(A) | |
if a.size == 1 and a.ndim < 2: | |
return np.array([[np.exp(a.item())]]) | |
if a.ndim < 2: | |
raise LinAlgError('The input array must be at least two-dimensional') | |
if a.shape[-1] != a.shape[-2]: | |
raise LinAlgError('Last 2 dimensions of the array must be square') | |
n = a.shape[-1] | |
# Empty array | |
if min(*a.shape) == 0: | |
return np.empty_like(a) | |
# Scalar case | |
if a.shape[-2:] == (1, 1): | |
return np.exp(a) | |
if not np.issubdtype(a.dtype, np.inexact): | |
a = a.astype(np.float64) | |
elif a.dtype == np.float16: | |
a = a.astype(np.float32) | |
# An explicit formula for 2x2 case exists (formula (2.2) in [1]). However, without | |
# Kahan's method, numerical instabilities can occur (See gh-19584). Hence removed | |
# here until we have a more stable implementation. | |
n = a.shape[-1] | |
eA = np.empty(a.shape, dtype=a.dtype) | |
# working memory to hold intermediate arrays | |
Am = np.empty((5, n, n), dtype=a.dtype) | |
# Main loop to go through the slices of an ndarray and passing to expm | |
for ind in product(*[range(x) for x in a.shape[:-2]]): | |
aw = a[ind] | |
lu = bandwidth(aw) | |
if not any(lu): # a is diagonal? | |
eA[ind] = np.diag(np.exp(np.diag(aw))) | |
continue | |
# Generic/triangular case; copy the slice into scratch and send. | |
# Am will be mutated by pick_pade_structure | |
Am[0, :, :] = aw | |
m, s = pick_pade_structure(Am) | |
if s != 0: # scaling needed | |
Am[:4] *= [[[2**(-s)]], [[4**(-s)]], [[16**(-s)]], [[64**(-s)]]] | |
pade_UV_calc(Am, n, m) | |
eAw = Am[0] | |
if s != 0: # squaring needed | |
if (lu[1] == 0) or (lu[0] == 0): # lower/upper triangular | |
# This branch implements Code Fragment 2.1 of [1] | |
diag_aw = np.diag(aw) | |
# einsum returns a writable view | |
np.einsum('ii->i', eAw)[:] = np.exp(diag_aw * 2**(-s)) | |
# super/sub diagonal | |
sd = np.diag(aw, k=-1 if lu[1] == 0 else 1) | |
for i in range(s-1, -1, -1): | |
eAw = eAw @ eAw | |
# diagonal | |
np.einsum('ii->i', eAw)[:] = np.exp(diag_aw * 2.**(-i)) | |
exp_sd = _exp_sinch(diag_aw * (2.**(-i))) * (sd * 2**(-i)) | |
if lu[1] == 0: # lower | |
np.einsum('ii->i', eAw[1:, :-1])[:] = exp_sd | |
else: # upper | |
np.einsum('ii->i', eAw[:-1, 1:])[:] = exp_sd | |
else: # generic | |
for _ in range(s): | |
eAw = eAw @ eAw | |
# Zero out the entries from np.empty in case of triangular input | |
if (lu[0] == 0) or (lu[1] == 0): | |
eA[ind] = np.triu(eAw) if lu[0] == 0 else np.tril(eAw) | |
else: | |
eA[ind] = eAw | |
return eA | |
def _exp_sinch(x): | |
# Higham's formula (10.42), might overflow, see GH-11839 | |
lexp_diff = np.diff(np.exp(x)) | |
l_diff = np.diff(x) | |
mask_z = l_diff == 0. | |
lexp_diff[~mask_z] /= l_diff[~mask_z] | |
lexp_diff[mask_z] = np.exp(x[:-1][mask_z]) | |
return lexp_diff | |
def cosm(A): | |
""" | |
Compute the matrix cosine. | |
This routine uses expm to compute the matrix exponentials. | |
Parameters | |
---------- | |
A : (N, N) array_like | |
Input array | |
Returns | |
------- | |
cosm : (N, N) ndarray | |
Matrix cosine of A | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import expm, sinm, cosm | |
Euler's identity (exp(i*theta) = cos(theta) + i*sin(theta)) | |
applied to a matrix: | |
>>> a = np.array([[1.0, 2.0], [-1.0, 3.0]]) | |
>>> expm(1j*a) | |
array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j], | |
[ 1.06860742+0.48905626j, -1.71075555+0.91406299j]]) | |
>>> cosm(a) + 1j*sinm(a) | |
array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j], | |
[ 1.06860742+0.48905626j, -1.71075555+0.91406299j]]) | |
""" | |
A = _asarray_square(A) | |
if np.iscomplexobj(A): | |
return 0.5*(expm(1j*A) + expm(-1j*A)) | |
else: | |
return expm(1j*A).real | |
def sinm(A): | |
""" | |
Compute the matrix sine. | |
This routine uses expm to compute the matrix exponentials. | |
Parameters | |
---------- | |
A : (N, N) array_like | |
Input array. | |
Returns | |
------- | |
sinm : (N, N) ndarray | |
Matrix sine of `A` | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import expm, sinm, cosm | |
Euler's identity (exp(i*theta) = cos(theta) + i*sin(theta)) | |
applied to a matrix: | |
>>> a = np.array([[1.0, 2.0], [-1.0, 3.0]]) | |
>>> expm(1j*a) | |
array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j], | |
[ 1.06860742+0.48905626j, -1.71075555+0.91406299j]]) | |
>>> cosm(a) + 1j*sinm(a) | |
array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j], | |
[ 1.06860742+0.48905626j, -1.71075555+0.91406299j]]) | |
""" | |
A = _asarray_square(A) | |
if np.iscomplexobj(A): | |
return -0.5j*(expm(1j*A) - expm(-1j*A)) | |
else: | |
return expm(1j*A).imag | |
def tanm(A): | |
""" | |
Compute the matrix tangent. | |
This routine uses expm to compute the matrix exponentials. | |
Parameters | |
---------- | |
A : (N, N) array_like | |
Input array. | |
Returns | |
------- | |
tanm : (N, N) ndarray | |
Matrix tangent of `A` | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import tanm, sinm, cosm | |
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]]) | |
>>> t = tanm(a) | |
>>> t | |
array([[ -2.00876993, -8.41880636], | |
[ -2.80626879, -10.42757629]]) | |
Verify tanm(a) = sinm(a).dot(inv(cosm(a))) | |
>>> s = sinm(a) | |
>>> c = cosm(a) | |
>>> s.dot(np.linalg.inv(c)) | |
array([[ -2.00876993, -8.41880636], | |
[ -2.80626879, -10.42757629]]) | |
""" | |
A = _asarray_square(A) | |
return _maybe_real(A, solve(cosm(A), sinm(A))) | |
def coshm(A): | |
""" | |
Compute the hyperbolic matrix cosine. | |
This routine uses expm to compute the matrix exponentials. | |
Parameters | |
---------- | |
A : (N, N) array_like | |
Input array. | |
Returns | |
------- | |
coshm : (N, N) ndarray | |
Hyperbolic matrix cosine of `A` | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import tanhm, sinhm, coshm | |
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]]) | |
>>> c = coshm(a) | |
>>> c | |
array([[ 11.24592233, 38.76236492], | |
[ 12.92078831, 50.00828725]]) | |
Verify tanhm(a) = sinhm(a).dot(inv(coshm(a))) | |
>>> t = tanhm(a) | |
>>> s = sinhm(a) | |
>>> t - s.dot(np.linalg.inv(c)) | |
array([[ 2.72004641e-15, 4.55191440e-15], | |
[ 0.00000000e+00, -5.55111512e-16]]) | |
""" | |
A = _asarray_square(A) | |
return _maybe_real(A, 0.5 * (expm(A) + expm(-A))) | |
def sinhm(A): | |
""" | |
Compute the hyperbolic matrix sine. | |
This routine uses expm to compute the matrix exponentials. | |
Parameters | |
---------- | |
A : (N, N) array_like | |
Input array. | |
Returns | |
------- | |
sinhm : (N, N) ndarray | |
Hyperbolic matrix sine of `A` | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import tanhm, sinhm, coshm | |
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]]) | |
>>> s = sinhm(a) | |
>>> s | |
array([[ 10.57300653, 39.28826594], | |
[ 13.09608865, 49.86127247]]) | |
Verify tanhm(a) = sinhm(a).dot(inv(coshm(a))) | |
>>> t = tanhm(a) | |
>>> c = coshm(a) | |
>>> t - s.dot(np.linalg.inv(c)) | |
array([[ 2.72004641e-15, 4.55191440e-15], | |
[ 0.00000000e+00, -5.55111512e-16]]) | |
""" | |
A = _asarray_square(A) | |
return _maybe_real(A, 0.5 * (expm(A) - expm(-A))) | |
def tanhm(A): | |
""" | |
Compute the hyperbolic matrix tangent. | |
This routine uses expm to compute the matrix exponentials. | |
Parameters | |
---------- | |
A : (N, N) array_like | |
Input array | |
Returns | |
------- | |
tanhm : (N, N) ndarray | |
Hyperbolic matrix tangent of `A` | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import tanhm, sinhm, coshm | |
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]]) | |
>>> t = tanhm(a) | |
>>> t | |
array([[ 0.3428582 , 0.51987926], | |
[ 0.17329309, 0.86273746]]) | |
Verify tanhm(a) = sinhm(a).dot(inv(coshm(a))) | |
>>> s = sinhm(a) | |
>>> c = coshm(a) | |
>>> t - s.dot(np.linalg.inv(c)) | |
array([[ 2.72004641e-15, 4.55191440e-15], | |
[ 0.00000000e+00, -5.55111512e-16]]) | |
""" | |
A = _asarray_square(A) | |
return _maybe_real(A, solve(coshm(A), sinhm(A))) | |
def funm(A, func, disp=True): | |
""" | |
Evaluate a matrix function specified by a callable. | |
Returns the value of matrix-valued function ``f`` at `A`. The | |
function ``f`` is an extension of the scalar-valued function `func` | |
to matrices. | |
Parameters | |
---------- | |
A : (N, N) array_like | |
Matrix at which to evaluate the function | |
func : callable | |
Callable object that evaluates a scalar function f. | |
Must be vectorized (eg. using vectorize). | |
disp : bool, optional | |
Print warning if error in the result is estimated large | |
instead of returning estimated error. (Default: True) | |
Returns | |
------- | |
funm : (N, N) ndarray | |
Value of the matrix function specified by func evaluated at `A` | |
errest : float | |
(if disp == False) | |
1-norm of the estimated error, ||err||_1 / ||A||_1 | |
Notes | |
----- | |
This function implements the general algorithm based on Schur decomposition | |
(Algorithm 9.1.1. in [1]_). | |
If the input matrix is known to be diagonalizable, then relying on the | |
eigendecomposition is likely to be faster. For example, if your matrix is | |
Hermitian, you can do | |
>>> from scipy.linalg import eigh | |
>>> def funm_herm(a, func, check_finite=False): | |
... w, v = eigh(a, check_finite=check_finite) | |
... ## if you further know that your matrix is positive semidefinite, | |
... ## you can optionally guard against precision errors by doing | |
... # w = np.maximum(w, 0) | |
... w = func(w) | |
... return (v * w).dot(v.conj().T) | |
References | |
---------- | |
.. [1] Gene H. Golub, Charles F. van Loan, Matrix Computations 4th ed. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import funm | |
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]]) | |
>>> funm(a, lambda x: x*x) | |
array([[ 4., 15.], | |
[ 5., 19.]]) | |
>>> a.dot(a) | |
array([[ 4., 15.], | |
[ 5., 19.]]) | |
""" | |
A = _asarray_square(A) | |
# Perform Shur decomposition (lapack ?gees) | |
T, Z = schur(A) | |
T, Z = rsf2csf(T, Z) | |
n, n = T.shape | |
F = diag(func(diag(T))) # apply function to diagonal elements | |
F = F.astype(T.dtype.char) # e.g., when F is real but T is complex | |
minden = abs(T[0, 0]) | |
# implement Algorithm 11.1.1 from Golub and Van Loan | |
# "matrix Computations." | |
for p in range(1, n): | |
for i in range(1, n-p+1): | |
j = i + p | |
s = T[i-1, j-1] * (F[j-1, j-1] - F[i-1, i-1]) | |
ksl = slice(i, j-1) | |
val = dot(T[i-1, ksl], F[ksl, j-1]) - dot(F[i-1, ksl], T[ksl, j-1]) | |
s = s + val | |
den = T[j-1, j-1] - T[i-1, i-1] | |
if den != 0.0: | |
s = s / den | |
F[i-1, j-1] = s | |
minden = min(minden, abs(den)) | |
F = dot(dot(Z, F), transpose(conjugate(Z))) | |
F = _maybe_real(A, F) | |
tol = {0: feps, 1: eps}[_array_precision[F.dtype.char]] | |
if minden == 0.0: | |
minden = tol | |
err = min(1, max(tol, (tol/minden)*norm(triu(T, 1), 1))) | |
if prod(ravel(logical_not(isfinite(F))), axis=0): | |
err = np.inf | |
if disp: | |
if err > 1000*tol: | |
print("funm result may be inaccurate, approximate err =", err) | |
return F | |
else: | |
return F, err | |
def signm(A, disp=True): | |
""" | |
Matrix sign function. | |
Extension of the scalar sign(x) to matrices. | |
Parameters | |
---------- | |
A : (N, N) array_like | |
Matrix at which to evaluate the sign function | |
disp : bool, optional | |
Print warning if error in the result is estimated large | |
instead of returning estimated error. (Default: True) | |
Returns | |
------- | |
signm : (N, N) ndarray | |
Value of the sign function at `A` | |
errest : float | |
(if disp == False) | |
1-norm of the estimated error, ||err||_1 / ||A||_1 | |
Examples | |
-------- | |
>>> from scipy.linalg import signm, eigvals | |
>>> a = [[1,2,3], [1,2,1], [1,1,1]] | |
>>> eigvals(a) | |
array([ 4.12488542+0.j, -0.76155718+0.j, 0.63667176+0.j]) | |
>>> eigvals(signm(a)) | |
array([-1.+0.j, 1.+0.j, 1.+0.j]) | |
""" | |
A = _asarray_square(A) | |
def rounded_sign(x): | |
rx = np.real(x) | |
if rx.dtype.char == 'f': | |
c = 1e3*feps*amax(x) | |
else: | |
c = 1e3*eps*amax(x) | |
return sign((absolute(rx) > c) * rx) | |
result, errest = funm(A, rounded_sign, disp=0) | |
errtol = {0: 1e3*feps, 1: 1e3*eps}[_array_precision[result.dtype.char]] | |
if errest < errtol: | |
return result | |
# Handle signm of defective matrices: | |
# See "E.D.Denman and J.Leyva-Ramos, Appl.Math.Comp., | |
# 8:237-250,1981" for how to improve the following (currently a | |
# rather naive) iteration process: | |
# a = result # sometimes iteration converges faster but where?? | |
# Shifting to avoid zero eigenvalues. How to ensure that shifting does | |
# not change the spectrum too much? | |
vals = svd(A, compute_uv=False) | |
max_sv = np.amax(vals) | |
# min_nonzero_sv = vals[(vals>max_sv*errtol).tolist().count(1)-1] | |
# c = 0.5/min_nonzero_sv | |
c = 0.5/max_sv | |
S0 = A + c*np.identity(A.shape[0]) | |
prev_errest = errest | |
for i in range(100): | |
iS0 = inv(S0) | |
S0 = 0.5*(S0 + iS0) | |
Pp = 0.5*(dot(S0, S0)+S0) | |
errest = norm(dot(Pp, Pp)-Pp, 1) | |
if errest < errtol or prev_errest == errest: | |
break | |
prev_errest = errest | |
if disp: | |
if not isfinite(errest) or errest >= errtol: | |
print("signm result may be inaccurate, approximate err =", errest) | |
return S0 | |
else: | |
return S0, errest | |
def khatri_rao(a, b): | |
r""" | |
Khatri-rao product | |
A column-wise Kronecker product of two matrices | |
Parameters | |
---------- | |
a : (n, k) array_like | |
Input array | |
b : (m, k) array_like | |
Input array | |
Returns | |
------- | |
c: (n*m, k) ndarray | |
Khatri-rao product of `a` and `b`. | |
See Also | |
-------- | |
kron : Kronecker product | |
Notes | |
----- | |
The mathematical definition of the Khatri-Rao product is: | |
.. math:: | |
(A_{ij} \bigotimes B_{ij})_{ij} | |
which is the Kronecker product of every column of A and B, e.g.:: | |
c = np.vstack([np.kron(a[:, k], b[:, k]) for k in range(b.shape[1])]).T | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy import linalg | |
>>> a = np.array([[1, 2, 3], [4, 5, 6]]) | |
>>> b = np.array([[3, 4, 5], [6, 7, 8], [2, 3, 9]]) | |
>>> linalg.khatri_rao(a, b) | |
array([[ 3, 8, 15], | |
[ 6, 14, 24], | |
[ 2, 6, 27], | |
[12, 20, 30], | |
[24, 35, 48], | |
[ 8, 15, 54]]) | |
""" | |
a = np.asarray(a) | |
b = np.asarray(b) | |
if not (a.ndim == 2 and b.ndim == 2): | |
raise ValueError("The both arrays should be 2-dimensional.") | |
if not a.shape[1] == b.shape[1]: | |
raise ValueError("The number of columns for both arrays " | |
"should be equal.") | |
# c = np.vstack([np.kron(a[:, k], b[:, k]) for k in range(b.shape[1])]).T | |
c = a[..., :, np.newaxis, :] * b[..., np.newaxis, :, :] | |
return c.reshape((-1,) + c.shape[2:]) | |