peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/linalg
/_special_matrices.py
import math | |
import numpy as np | |
from numpy.lib.stride_tricks import as_strided | |
__all__ = ['toeplitz', 'circulant', 'hankel', | |
'hadamard', 'leslie', 'kron', 'block_diag', 'companion', | |
'helmert', 'hilbert', 'invhilbert', 'pascal', 'invpascal', 'dft', | |
'fiedler', 'fiedler_companion', 'convolution_matrix'] | |
# ----------------------------------------------------------------------------- | |
# matrix construction functions | |
# ----------------------------------------------------------------------------- | |
def toeplitz(c, r=None): | |
""" | |
Construct a Toeplitz matrix. | |
The Toeplitz matrix has constant diagonals, with c as its first column | |
and r as its first row. If r is not given, ``r == conjugate(c)`` is | |
assumed. | |
Parameters | |
---------- | |
c : array_like | |
First column of the matrix. Whatever the actual shape of `c`, it | |
will be converted to a 1-D array. | |
r : array_like, optional | |
First row of the matrix. If None, ``r = conjugate(c)`` is assumed; | |
in this case, if c[0] is real, the result is a Hermitian matrix. | |
r[0] is ignored; the first row of the returned matrix is | |
``[c[0], r[1:]]``. Whatever the actual shape of `r`, it will be | |
converted to a 1-D array. | |
Returns | |
------- | |
A : (len(c), len(r)) ndarray | |
The Toeplitz matrix. Dtype is the same as ``(c[0] + r[0]).dtype``. | |
See Also | |
-------- | |
circulant : circulant matrix | |
hankel : Hankel matrix | |
solve_toeplitz : Solve a Toeplitz system. | |
Notes | |
----- | |
The behavior when `c` or `r` is a scalar, or when `c` is complex and | |
`r` is None, was changed in version 0.8.0. The behavior in previous | |
versions was undocumented and is no longer supported. | |
Examples | |
-------- | |
>>> from scipy.linalg import toeplitz | |
>>> toeplitz([1,2,3], [1,4,5,6]) | |
array([[1, 4, 5, 6], | |
[2, 1, 4, 5], | |
[3, 2, 1, 4]]) | |
>>> toeplitz([1.0, 2+3j, 4-1j]) | |
array([[ 1.+0.j, 2.-3.j, 4.+1.j], | |
[ 2.+3.j, 1.+0.j, 2.-3.j], | |
[ 4.-1.j, 2.+3.j, 1.+0.j]]) | |
""" | |
c = np.asarray(c).ravel() | |
if r is None: | |
r = c.conjugate() | |
else: | |
r = np.asarray(r).ravel() | |
# Form a 1-D array containing a reversed c followed by r[1:] that could be | |
# strided to give us toeplitz matrix. | |
vals = np.concatenate((c[::-1], r[1:])) | |
out_shp = len(c), len(r) | |
n = vals.strides[0] | |
return as_strided(vals[len(c)-1:], shape=out_shp, strides=(-n, n)).copy() | |
def circulant(c): | |
""" | |
Construct a circulant matrix. | |
Parameters | |
---------- | |
c : (N,) array_like | |
1-D array, the first column of the matrix. | |
Returns | |
------- | |
A : (N, N) ndarray | |
A circulant matrix whose first column is `c`. | |
See Also | |
-------- | |
toeplitz : Toeplitz matrix | |
hankel : Hankel matrix | |
solve_circulant : Solve a circulant system. | |
Notes | |
----- | |
.. versionadded:: 0.8.0 | |
Examples | |
-------- | |
>>> from scipy.linalg import circulant | |
>>> circulant([1, 2, 3]) | |
array([[1, 3, 2], | |
[2, 1, 3], | |
[3, 2, 1]]) | |
""" | |
c = np.asarray(c).ravel() | |
# Form an extended array that could be strided to give circulant version | |
c_ext = np.concatenate((c[::-1], c[:0:-1])) | |
L = len(c) | |
n = c_ext.strides[0] | |
return as_strided(c_ext[L-1:], shape=(L, L), strides=(-n, n)).copy() | |
def hankel(c, r=None): | |
""" | |
Construct a Hankel matrix. | |
The Hankel matrix has constant anti-diagonals, with `c` as its | |
first column and `r` as its last row. If `r` is not given, then | |
`r = zeros_like(c)` is assumed. | |
Parameters | |
---------- | |
c : array_like | |
First column of the matrix. Whatever the actual shape of `c`, it | |
will be converted to a 1-D array. | |
r : array_like, optional | |
Last row of the matrix. If None, ``r = zeros_like(c)`` is assumed. | |
r[0] is ignored; the last row of the returned matrix is | |
``[c[-1], r[1:]]``. Whatever the actual shape of `r`, it will be | |
converted to a 1-D array. | |
Returns | |
------- | |
A : (len(c), len(r)) ndarray | |
The Hankel matrix. Dtype is the same as ``(c[0] + r[0]).dtype``. | |
See Also | |
-------- | |
toeplitz : Toeplitz matrix | |
circulant : circulant matrix | |
Examples | |
-------- | |
>>> from scipy.linalg import hankel | |
>>> hankel([1, 17, 99]) | |
array([[ 1, 17, 99], | |
[17, 99, 0], | |
[99, 0, 0]]) | |
>>> hankel([1,2,3,4], [4,7,7,8,9]) | |
array([[1, 2, 3, 4, 7], | |
[2, 3, 4, 7, 7], | |
[3, 4, 7, 7, 8], | |
[4, 7, 7, 8, 9]]) | |
""" | |
c = np.asarray(c).ravel() | |
if r is None: | |
r = np.zeros_like(c) | |
else: | |
r = np.asarray(r).ravel() | |
# Form a 1-D array of values to be used in the matrix, containing `c` | |
# followed by r[1:]. | |
vals = np.concatenate((c, r[1:])) | |
# Stride on concatenated array to get hankel matrix | |
out_shp = len(c), len(r) | |
n = vals.strides[0] | |
return as_strided(vals, shape=out_shp, strides=(n, n)).copy() | |
def hadamard(n, dtype=int): | |
""" | |
Construct an Hadamard matrix. | |
Constructs an n-by-n Hadamard matrix, using Sylvester's | |
construction. `n` must be a power of 2. | |
Parameters | |
---------- | |
n : int | |
The order of the matrix. `n` must be a power of 2. | |
dtype : dtype, optional | |
The data type of the array to be constructed. | |
Returns | |
------- | |
H : (n, n) ndarray | |
The Hadamard matrix. | |
Notes | |
----- | |
.. versionadded:: 0.8.0 | |
Examples | |
-------- | |
>>> from scipy.linalg import hadamard | |
>>> hadamard(2, dtype=complex) | |
array([[ 1.+0.j, 1.+0.j], | |
[ 1.+0.j, -1.-0.j]]) | |
>>> hadamard(4) | |
array([[ 1, 1, 1, 1], | |
[ 1, -1, 1, -1], | |
[ 1, 1, -1, -1], | |
[ 1, -1, -1, 1]]) | |
""" | |
# This function is a slightly modified version of the | |
# function contributed by Ivo in ticket #675. | |
if n < 1: | |
lg2 = 0 | |
else: | |
lg2 = int(math.log(n, 2)) | |
if 2 ** lg2 != n: | |
raise ValueError("n must be an positive integer, and n must be " | |
"a power of 2") | |
H = np.array([[1]], dtype=dtype) | |
# Sylvester's construction | |
for i in range(0, lg2): | |
H = np.vstack((np.hstack((H, H)), np.hstack((H, -H)))) | |
return H | |
def leslie(f, s): | |
""" | |
Create a Leslie matrix. | |
Given the length n array of fecundity coefficients `f` and the length | |
n-1 array of survival coefficients `s`, return the associated Leslie | |
matrix. | |
Parameters | |
---------- | |
f : (N,) array_like | |
The "fecundity" coefficients. | |
s : (N-1,) array_like | |
The "survival" coefficients, has to be 1-D. The length of `s` | |
must be one less than the length of `f`, and it must be at least 1. | |
Returns | |
------- | |
L : (N, N) ndarray | |
The array is zero except for the first row, | |
which is `f`, and the first sub-diagonal, which is `s`. | |
The data-type of the array will be the data-type of ``f[0]+s[0]``. | |
Notes | |
----- | |
.. versionadded:: 0.8.0 | |
The Leslie matrix is used to model discrete-time, age-structured | |
population growth [1]_ [2]_. In a population with `n` age classes, two sets | |
of parameters define a Leslie matrix: the `n` "fecundity coefficients", | |
which give the number of offspring per-capita produced by each age | |
class, and the `n` - 1 "survival coefficients", which give the | |
per-capita survival rate of each age class. | |
References | |
---------- | |
.. [1] P. H. Leslie, On the use of matrices in certain population | |
mathematics, Biometrika, Vol. 33, No. 3, 183--212 (Nov. 1945) | |
.. [2] P. H. Leslie, Some further notes on the use of matrices in | |
population mathematics, Biometrika, Vol. 35, No. 3/4, 213--245 | |
(Dec. 1948) | |
Examples | |
-------- | |
>>> from scipy.linalg import leslie | |
>>> leslie([0.1, 2.0, 1.0, 0.1], [0.2, 0.8, 0.7]) | |
array([[ 0.1, 2. , 1. , 0.1], | |
[ 0.2, 0. , 0. , 0. ], | |
[ 0. , 0.8, 0. , 0. ], | |
[ 0. , 0. , 0.7, 0. ]]) | |
""" | |
f = np.atleast_1d(f) | |
s = np.atleast_1d(s) | |
if f.ndim != 1: | |
raise ValueError("Incorrect shape for f. f must be 1D") | |
if s.ndim != 1: | |
raise ValueError("Incorrect shape for s. s must be 1D") | |
if f.size != s.size + 1: | |
raise ValueError("Incorrect lengths for f and s. The length" | |
" of s must be one less than the length of f.") | |
if s.size == 0: | |
raise ValueError("The length of s must be at least 1.") | |
tmp = f[0] + s[0] | |
n = f.size | |
a = np.zeros((n, n), dtype=tmp.dtype) | |
a[0] = f | |
a[list(range(1, n)), list(range(0, n - 1))] = s | |
return a | |
def kron(a, b): | |
""" | |
Kronecker product. | |
The result is the block matrix:: | |
a[0,0]*b a[0,1]*b ... a[0,-1]*b | |
a[1,0]*b a[1,1]*b ... a[1,-1]*b | |
... | |
a[-1,0]*b a[-1,1]*b ... a[-1,-1]*b | |
Parameters | |
---------- | |
a : (M, N) ndarray | |
Input array | |
b : (P, Q) ndarray | |
Input array | |
Returns | |
------- | |
A : (M*P, N*Q) ndarray | |
Kronecker product of `a` and `b`. | |
Examples | |
-------- | |
>>> from numpy import array | |
>>> from scipy.linalg import kron | |
>>> kron(array([[1,2],[3,4]]), array([[1,1,1]])) | |
array([[1, 1, 1, 2, 2, 2], | |
[3, 3, 3, 4, 4, 4]]) | |
""" | |
if not a.flags['CONTIGUOUS']: | |
a = np.reshape(a, a.shape) | |
if not b.flags['CONTIGUOUS']: | |
b = np.reshape(b, b.shape) | |
o = np.outer(a, b) | |
o = o.reshape(a.shape + b.shape) | |
return np.concatenate(np.concatenate(o, axis=1), axis=1) | |
def block_diag(*arrs): | |
""" | |
Create a block diagonal matrix from provided arrays. | |
Given the inputs `A`, `B` and `C`, the output will have these | |
arrays arranged on the diagonal:: | |
[[A, 0, 0], | |
[0, B, 0], | |
[0, 0, C]] | |
Parameters | |
---------- | |
A, B, C, ... : array_like, up to 2-D | |
Input arrays. A 1-D array or array_like sequence of length `n` is | |
treated as a 2-D array with shape ``(1,n)``. | |
Returns | |
------- | |
D : ndarray | |
Array with `A`, `B`, `C`, ... on the diagonal. `D` has the | |
same dtype as `A`. | |
Notes | |
----- | |
If all the input arrays are square, the output is known as a | |
block diagonal matrix. | |
Empty sequences (i.e., array-likes of zero size) will not be ignored. | |
Noteworthy, both [] and [[]] are treated as matrices with shape ``(1,0)``. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import block_diag | |
>>> A = [[1, 0], | |
... [0, 1]] | |
>>> B = [[3, 4, 5], | |
... [6, 7, 8]] | |
>>> C = [[7]] | |
>>> P = np.zeros((2, 0), dtype='int32') | |
>>> block_diag(A, B, C) | |
array([[1, 0, 0, 0, 0, 0], | |
[0, 1, 0, 0, 0, 0], | |
[0, 0, 3, 4, 5, 0], | |
[0, 0, 6, 7, 8, 0], | |
[0, 0, 0, 0, 0, 7]]) | |
>>> block_diag(A, P, B, C) | |
array([[1, 0, 0, 0, 0, 0], | |
[0, 1, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 3, 4, 5, 0], | |
[0, 0, 6, 7, 8, 0], | |
[0, 0, 0, 0, 0, 7]]) | |
>>> block_diag(1.0, [2, 3], [[4, 5], [6, 7]]) | |
array([[ 1., 0., 0., 0., 0.], | |
[ 0., 2., 3., 0., 0.], | |
[ 0., 0., 0., 4., 5.], | |
[ 0., 0., 0., 6., 7.]]) | |
""" | |
if arrs == (): | |
arrs = ([],) | |
arrs = [np.atleast_2d(a) for a in arrs] | |
bad_args = [k for k in range(len(arrs)) if arrs[k].ndim > 2] | |
if bad_args: | |
raise ValueError("arguments in the following positions have dimension " | |
"greater than 2: %s" % bad_args) | |
shapes = np.array([a.shape for a in arrs]) | |
out_dtype = np.result_type(*[arr.dtype for arr in arrs]) | |
out = np.zeros(np.sum(shapes, axis=0), dtype=out_dtype) | |
r, c = 0, 0 | |
for i, (rr, cc) in enumerate(shapes): | |
out[r:r + rr, c:c + cc] = arrs[i] | |
r += rr | |
c += cc | |
return out | |
def companion(a): | |
""" | |
Create a companion matrix. | |
Create the companion matrix [1]_ associated with the polynomial whose | |
coefficients are given in `a`. | |
Parameters | |
---------- | |
a : (N,) array_like | |
1-D array of polynomial coefficients. The length of `a` must be | |
at least two, and ``a[0]`` must not be zero. | |
Returns | |
------- | |
c : (N-1, N-1) ndarray | |
The first row of `c` is ``-a[1:]/a[0]``, and the first | |
sub-diagonal is all ones. The data-type of the array is the same | |
as the data-type of ``1.0*a[0]``. | |
Raises | |
------ | |
ValueError | |
If any of the following are true: a) ``a.ndim != 1``; | |
b) ``a.size < 2``; c) ``a[0] == 0``. | |
Notes | |
----- | |
.. versionadded:: 0.8.0 | |
References | |
---------- | |
.. [1] R. A. Horn & C. R. Johnson, *Matrix Analysis*. Cambridge, UK: | |
Cambridge University Press, 1999, pp. 146-7. | |
Examples | |
-------- | |
>>> from scipy.linalg import companion | |
>>> companion([1, -10, 31, -30]) | |
array([[ 10., -31., 30.], | |
[ 1., 0., 0.], | |
[ 0., 1., 0.]]) | |
""" | |
a = np.atleast_1d(a) | |
if a.ndim != 1: | |
raise ValueError("Incorrect shape for `a`. `a` must be " | |
"one-dimensional.") | |
if a.size < 2: | |
raise ValueError("The length of `a` must be at least 2.") | |
if a[0] == 0: | |
raise ValueError("The first coefficient in `a` must not be zero.") | |
first_row = -a[1:] / (1.0 * a[0]) | |
n = a.size | |
c = np.zeros((n - 1, n - 1), dtype=first_row.dtype) | |
c[0] = first_row | |
c[list(range(1, n - 1)), list(range(0, n - 2))] = 1 | |
return c | |
def helmert(n, full=False): | |
""" | |
Create an Helmert matrix of order `n`. | |
This has applications in statistics, compositional or simplicial analysis, | |
and in Aitchison geometry. | |
Parameters | |
---------- | |
n : int | |
The size of the array to create. | |
full : bool, optional | |
If True the (n, n) ndarray will be returned. | |
Otherwise the submatrix that does not include the first | |
row will be returned. | |
Default: False. | |
Returns | |
------- | |
M : ndarray | |
The Helmert matrix. | |
The shape is (n, n) or (n-1, n) depending on the `full` argument. | |
Examples | |
-------- | |
>>> from scipy.linalg import helmert | |
>>> helmert(5, full=True) | |
array([[ 0.4472136 , 0.4472136 , 0.4472136 , 0.4472136 , 0.4472136 ], | |
[ 0.70710678, -0.70710678, 0. , 0. , 0. ], | |
[ 0.40824829, 0.40824829, -0.81649658, 0. , 0. ], | |
[ 0.28867513, 0.28867513, 0.28867513, -0.8660254 , 0. ], | |
[ 0.2236068 , 0.2236068 , 0.2236068 , 0.2236068 , -0.89442719]]) | |
""" | |
H = np.tril(np.ones((n, n)), -1) - np.diag(np.arange(n)) | |
d = np.arange(n) * np.arange(1, n+1) | |
H[0] = 1 | |
d[0] = n | |
H_full = H / np.sqrt(d)[:, np.newaxis] | |
if full: | |
return H_full | |
else: | |
return H_full[1:] | |
def hilbert(n): | |
""" | |
Create a Hilbert matrix of order `n`. | |
Returns the `n` by `n` array with entries `h[i,j] = 1 / (i + j + 1)`. | |
Parameters | |
---------- | |
n : int | |
The size of the array to create. | |
Returns | |
------- | |
h : (n, n) ndarray | |
The Hilbert matrix. | |
See Also | |
-------- | |
invhilbert : Compute the inverse of a Hilbert matrix. | |
Notes | |
----- | |
.. versionadded:: 0.10.0 | |
Examples | |
-------- | |
>>> from scipy.linalg import hilbert | |
>>> hilbert(3) | |
array([[ 1. , 0.5 , 0.33333333], | |
[ 0.5 , 0.33333333, 0.25 ], | |
[ 0.33333333, 0.25 , 0.2 ]]) | |
""" | |
values = 1.0 / (1.0 + np.arange(2 * n - 1)) | |
h = hankel(values[:n], r=values[n - 1:]) | |
return h | |
def invhilbert(n, exact=False): | |
""" | |
Compute the inverse of the Hilbert matrix of order `n`. | |
The entries in the inverse of a Hilbert matrix are integers. When `n` | |
is greater than 14, some entries in the inverse exceed the upper limit | |
of 64 bit integers. The `exact` argument provides two options for | |
dealing with these large integers. | |
Parameters | |
---------- | |
n : int | |
The order of the Hilbert matrix. | |
exact : bool, optional | |
If False, the data type of the array that is returned is np.float64, | |
and the array is an approximation of the inverse. | |
If True, the array is the exact integer inverse array. To represent | |
the exact inverse when n > 14, the returned array is an object array | |
of long integers. For n <= 14, the exact inverse is returned as an | |
array with data type np.int64. | |
Returns | |
------- | |
invh : (n, n) ndarray | |
The data type of the array is np.float64 if `exact` is False. | |
If `exact` is True, the data type is either np.int64 (for n <= 14) | |
or object (for n > 14). In the latter case, the objects in the | |
array will be long integers. | |
See Also | |
-------- | |
hilbert : Create a Hilbert matrix. | |
Notes | |
----- | |
.. versionadded:: 0.10.0 | |
Examples | |
-------- | |
>>> from scipy.linalg import invhilbert | |
>>> invhilbert(4) | |
array([[ 16., -120., 240., -140.], | |
[ -120., 1200., -2700., 1680.], | |
[ 240., -2700., 6480., -4200.], | |
[ -140., 1680., -4200., 2800.]]) | |
>>> invhilbert(4, exact=True) | |
array([[ 16, -120, 240, -140], | |
[ -120, 1200, -2700, 1680], | |
[ 240, -2700, 6480, -4200], | |
[ -140, 1680, -4200, 2800]], dtype=int64) | |
>>> invhilbert(16)[7,7] | |
4.2475099528537506e+19 | |
>>> invhilbert(16, exact=True)[7,7] | |
42475099528537378560 | |
""" | |
from scipy.special import comb | |
if exact: | |
if n > 14: | |
dtype = object | |
else: | |
dtype = np.int64 | |
else: | |
dtype = np.float64 | |
invh = np.empty((n, n), dtype=dtype) | |
for i in range(n): | |
for j in range(0, i + 1): | |
s = i + j | |
invh[i, j] = ((-1) ** s * (s + 1) * | |
comb(n + i, n - j - 1, exact=exact) * | |
comb(n + j, n - i - 1, exact=exact) * | |
comb(s, i, exact=exact) ** 2) | |
if i != j: | |
invh[j, i] = invh[i, j] | |
return invh | |
def pascal(n, kind='symmetric', exact=True): | |
""" | |
Returns the n x n Pascal matrix. | |
The Pascal matrix is a matrix containing the binomial coefficients as | |
its elements. | |
Parameters | |
---------- | |
n : int | |
The size of the matrix to create; that is, the result is an n x n | |
matrix. | |
kind : str, optional | |
Must be one of 'symmetric', 'lower', or 'upper'. | |
Default is 'symmetric'. | |
exact : bool, optional | |
If `exact` is True, the result is either an array of type | |
numpy.uint64 (if n < 35) or an object array of Python long integers. | |
If `exact` is False, the coefficients in the matrix are computed using | |
`scipy.special.comb` with `exact=False`. The result will be a floating | |
point array, and the values in the array will not be the exact | |
coefficients, but this version is much faster than `exact=True`. | |
Returns | |
------- | |
p : (n, n) ndarray | |
The Pascal matrix. | |
See Also | |
-------- | |
invpascal | |
Notes | |
----- | |
See https://en.wikipedia.org/wiki/Pascal_matrix for more information | |
about Pascal matrices. | |
.. versionadded:: 0.11.0 | |
Examples | |
-------- | |
>>> from scipy.linalg import pascal | |
>>> pascal(4) | |
array([[ 1, 1, 1, 1], | |
[ 1, 2, 3, 4], | |
[ 1, 3, 6, 10], | |
[ 1, 4, 10, 20]], dtype=uint64) | |
>>> pascal(4, kind='lower') | |
array([[1, 0, 0, 0], | |
[1, 1, 0, 0], | |
[1, 2, 1, 0], | |
[1, 3, 3, 1]], dtype=uint64) | |
>>> pascal(50)[-1, -1] | |
25477612258980856902730428600 | |
>>> from scipy.special import comb | |
>>> comb(98, 49, exact=True) | |
25477612258980856902730428600 | |
""" | |
from scipy.special import comb | |
if kind not in ['symmetric', 'lower', 'upper']: | |
raise ValueError("kind must be 'symmetric', 'lower', or 'upper'") | |
if exact: | |
if n >= 35: | |
L_n = np.empty((n, n), dtype=object) | |
L_n.fill(0) | |
else: | |
L_n = np.zeros((n, n), dtype=np.uint64) | |
for i in range(n): | |
for j in range(i + 1): | |
L_n[i, j] = comb(i, j, exact=True) | |
else: | |
L_n = comb(*np.ogrid[:n, :n]) | |
if kind == 'lower': | |
p = L_n | |
elif kind == 'upper': | |
p = L_n.T | |
else: | |
p = np.dot(L_n, L_n.T) | |
return p | |
def invpascal(n, kind='symmetric', exact=True): | |
""" | |
Returns the inverse of the n x n Pascal matrix. | |
The Pascal matrix is a matrix containing the binomial coefficients as | |
its elements. | |
Parameters | |
---------- | |
n : int | |
The size of the matrix to create; that is, the result is an n x n | |
matrix. | |
kind : str, optional | |
Must be one of 'symmetric', 'lower', or 'upper'. | |
Default is 'symmetric'. | |
exact : bool, optional | |
If `exact` is True, the result is either an array of type | |
``numpy.int64`` (if `n` <= 35) or an object array of Python integers. | |
If `exact` is False, the coefficients in the matrix are computed using | |
`scipy.special.comb` with `exact=False`. The result will be a floating | |
point array, and for large `n`, the values in the array will not be the | |
exact coefficients. | |
Returns | |
------- | |
invp : (n, n) ndarray | |
The inverse of the Pascal matrix. | |
See Also | |
-------- | |
pascal | |
Notes | |
----- | |
.. versionadded:: 0.16.0 | |
References | |
---------- | |
.. [1] "Pascal matrix", https://en.wikipedia.org/wiki/Pascal_matrix | |
.. [2] Cohen, A. M., "The inverse of a Pascal matrix", Mathematical | |
Gazette, 59(408), pp. 111-112, 1975. | |
Examples | |
-------- | |
>>> from scipy.linalg import invpascal, pascal | |
>>> invp = invpascal(5) | |
>>> invp | |
array([[ 5, -10, 10, -5, 1], | |
[-10, 30, -35, 19, -4], | |
[ 10, -35, 46, -27, 6], | |
[ -5, 19, -27, 17, -4], | |
[ 1, -4, 6, -4, 1]]) | |
>>> p = pascal(5) | |
>>> p.dot(invp) | |
array([[ 1., 0., 0., 0., 0.], | |
[ 0., 1., 0., 0., 0.], | |
[ 0., 0., 1., 0., 0.], | |
[ 0., 0., 0., 1., 0.], | |
[ 0., 0., 0., 0., 1.]]) | |
An example of the use of `kind` and `exact`: | |
>>> invpascal(5, kind='lower', exact=False) | |
array([[ 1., -0., 0., -0., 0.], | |
[-1., 1., -0., 0., -0.], | |
[ 1., -2., 1., -0., 0.], | |
[-1., 3., -3., 1., -0.], | |
[ 1., -4., 6., -4., 1.]]) | |
""" | |
from scipy.special import comb | |
if kind not in ['symmetric', 'lower', 'upper']: | |
raise ValueError("'kind' must be 'symmetric', 'lower' or 'upper'.") | |
if kind == 'symmetric': | |
if exact: | |
if n > 34: | |
dt = object | |
else: | |
dt = np.int64 | |
else: | |
dt = np.float64 | |
invp = np.empty((n, n), dtype=dt) | |
for i in range(n): | |
for j in range(0, i + 1): | |
v = 0 | |
for k in range(n - i): | |
v += comb(i + k, k, exact=exact) * comb(i + k, i + k - j, | |
exact=exact) | |
invp[i, j] = (-1)**(i - j) * v | |
if i != j: | |
invp[j, i] = invp[i, j] | |
else: | |
# For the 'lower' and 'upper' cases, we computer the inverse by | |
# changing the sign of every other diagonal of the pascal matrix. | |
invp = pascal(n, kind=kind, exact=exact) | |
if invp.dtype == np.uint64: | |
# This cast from np.uint64 to int64 OK, because if `kind` is not | |
# "symmetric", the values in invp are all much less than 2**63. | |
invp = invp.view(np.int64) | |
# The toeplitz matrix has alternating bands of 1 and -1. | |
invp *= toeplitz((-1)**np.arange(n)).astype(invp.dtype) | |
return invp | |
def dft(n, scale=None): | |
""" | |
Discrete Fourier transform matrix. | |
Create the matrix that computes the discrete Fourier transform of a | |
sequence [1]_. The nth primitive root of unity used to generate the | |
matrix is exp(-2*pi*i/n), where i = sqrt(-1). | |
Parameters | |
---------- | |
n : int | |
Size the matrix to create. | |
scale : str, optional | |
Must be None, 'sqrtn', or 'n'. | |
If `scale` is 'sqrtn', the matrix is divided by `sqrt(n)`. | |
If `scale` is 'n', the matrix is divided by `n`. | |
If `scale` is None (the default), the matrix is not normalized, and the | |
return value is simply the Vandermonde matrix of the roots of unity. | |
Returns | |
------- | |
m : (n, n) ndarray | |
The DFT matrix. | |
Notes | |
----- | |
When `scale` is None, multiplying a vector by the matrix returned by | |
`dft` is mathematically equivalent to (but much less efficient than) | |
the calculation performed by `scipy.fft.fft`. | |
.. versionadded:: 0.14.0 | |
References | |
---------- | |
.. [1] "DFT matrix", https://en.wikipedia.org/wiki/DFT_matrix | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import dft | |
>>> np.set_printoptions(precision=2, suppress=True) # for compact output | |
>>> m = dft(5) | |
>>> m | |
array([[ 1. +0.j , 1. +0.j , 1. +0.j , 1. +0.j , 1. +0.j ], | |
[ 1. +0.j , 0.31-0.95j, -0.81-0.59j, -0.81+0.59j, 0.31+0.95j], | |
[ 1. +0.j , -0.81-0.59j, 0.31+0.95j, 0.31-0.95j, -0.81+0.59j], | |
[ 1. +0.j , -0.81+0.59j, 0.31-0.95j, 0.31+0.95j, -0.81-0.59j], | |
[ 1. +0.j , 0.31+0.95j, -0.81+0.59j, -0.81-0.59j, 0.31-0.95j]]) | |
>>> x = np.array([1, 2, 3, 0, 3]) | |
>>> m @ x # Compute the DFT of x | |
array([ 9. +0.j , 0.12-0.81j, -2.12+3.44j, -2.12-3.44j, 0.12+0.81j]) | |
Verify that ``m @ x`` is the same as ``fft(x)``. | |
>>> from scipy.fft import fft | |
>>> fft(x) # Same result as m @ x | |
array([ 9. +0.j , 0.12-0.81j, -2.12+3.44j, -2.12-3.44j, 0.12+0.81j]) | |
""" | |
if scale not in [None, 'sqrtn', 'n']: | |
raise ValueError("scale must be None, 'sqrtn', or 'n'; " | |
f"{scale!r} is not valid.") | |
omegas = np.exp(-2j * np.pi * np.arange(n) / n).reshape(-1, 1) | |
m = omegas ** np.arange(n) | |
if scale == 'sqrtn': | |
m /= math.sqrt(n) | |
elif scale == 'n': | |
m /= n | |
return m | |
def fiedler(a): | |
"""Returns a symmetric Fiedler matrix | |
Given an sequence of numbers `a`, Fiedler matrices have the structure | |
``F[i, j] = np.abs(a[i] - a[j])``, and hence zero diagonals and nonnegative | |
entries. A Fiedler matrix has a dominant positive eigenvalue and other | |
eigenvalues are negative. Although not valid generally, for certain inputs, | |
the inverse and the determinant can be derived explicitly as given in [1]_. | |
Parameters | |
---------- | |
a : (n,) array_like | |
coefficient array | |
Returns | |
------- | |
F : (n, n) ndarray | |
See Also | |
-------- | |
circulant, toeplitz | |
Notes | |
----- | |
.. versionadded:: 1.3.0 | |
References | |
---------- | |
.. [1] J. Todd, "Basic Numerical Mathematics: Vol.2 : Numerical Algebra", | |
1977, Birkhauser, :doi:`10.1007/978-3-0348-7286-7` | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import det, inv, fiedler | |
>>> a = [1, 4, 12, 45, 77] | |
>>> n = len(a) | |
>>> A = fiedler(a) | |
>>> A | |
array([[ 0, 3, 11, 44, 76], | |
[ 3, 0, 8, 41, 73], | |
[11, 8, 0, 33, 65], | |
[44, 41, 33, 0, 32], | |
[76, 73, 65, 32, 0]]) | |
The explicit formulas for determinant and inverse seem to hold only for | |
monotonically increasing/decreasing arrays. Note the tridiagonal structure | |
and the corners. | |
>>> Ai = inv(A) | |
>>> Ai[np.abs(Ai) < 1e-12] = 0. # cleanup the numerical noise for display | |
>>> Ai | |
array([[-0.16008772, 0.16666667, 0. , 0. , 0.00657895], | |
[ 0.16666667, -0.22916667, 0.0625 , 0. , 0. ], | |
[ 0. , 0.0625 , -0.07765152, 0.01515152, 0. ], | |
[ 0. , 0. , 0.01515152, -0.03077652, 0.015625 ], | |
[ 0.00657895, 0. , 0. , 0.015625 , -0.00904605]]) | |
>>> det(A) | |
15409151.999999998 | |
>>> (-1)**(n-1) * 2**(n-2) * np.diff(a).prod() * (a[-1] - a[0]) | |
15409152 | |
""" | |
a = np.atleast_1d(a) | |
if a.ndim != 1: | |
raise ValueError("Input 'a' must be a 1D array.") | |
if a.size == 0: | |
return np.array([], dtype=float) | |
elif a.size == 1: | |
return np.array([[0.]]) | |
else: | |
return np.abs(a[:, None] - a) | |
def fiedler_companion(a): | |
""" Returns a Fiedler companion matrix | |
Given a polynomial coefficient array ``a``, this function forms a | |
pentadiagonal matrix with a special structure whose eigenvalues coincides | |
with the roots of ``a``. | |
Parameters | |
---------- | |
a : (N,) array_like | |
1-D array of polynomial coefficients in descending order with a nonzero | |
leading coefficient. For ``N < 2``, an empty array is returned. | |
Returns | |
------- | |
c : (N-1, N-1) ndarray | |
Resulting companion matrix | |
See Also | |
-------- | |
companion | |
Notes | |
----- | |
Similar to `companion` the leading coefficient should be nonzero. In the case | |
the leading coefficient is not 1, other coefficients are rescaled before | |
the array generation. To avoid numerical issues, it is best to provide a | |
monic polynomial. | |
.. versionadded:: 1.3.0 | |
References | |
---------- | |
.. [1] M. Fiedler, " A note on companion matrices", Linear Algebra and its | |
Applications, 2003, :doi:`10.1016/S0024-3795(03)00548-2` | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import fiedler_companion, eigvals | |
>>> p = np.poly(np.arange(1, 9, 2)) # [1., -16., 86., -176., 105.] | |
>>> fc = fiedler_companion(p) | |
>>> fc | |
array([[ 16., -86., 1., 0.], | |
[ 1., 0., 0., 0.], | |
[ 0., 176., 0., -105.], | |
[ 0., 1., 0., 0.]]) | |
>>> eigvals(fc) | |
array([7.+0.j, 5.+0.j, 3.+0.j, 1.+0.j]) | |
""" | |
a = np.atleast_1d(a) | |
if a.ndim != 1: | |
raise ValueError("Input 'a' must be a 1-D array.") | |
if a.size <= 2: | |
if a.size == 2: | |
return np.array([[-(a/a[0])[-1]]]) | |
return np.array([], dtype=a.dtype) | |
if a[0] == 0.: | |
raise ValueError('Leading coefficient is zero.') | |
a = a/a[0] | |
n = a.size - 1 | |
c = np.zeros((n, n), dtype=a.dtype) | |
# subdiagonals | |
c[range(3, n, 2), range(1, n-2, 2)] = 1. | |
c[range(2, n, 2), range(1, n-1, 2)] = -a[3::2] | |
# superdiagonals | |
c[range(0, n-2, 2), range(2, n, 2)] = 1. | |
c[range(0, n-1, 2), range(1, n, 2)] = -a[2::2] | |
c[[0, 1], 0] = [-a[1], 1] | |
return c | |
def convolution_matrix(a, n, mode='full'): | |
""" | |
Construct a convolution matrix. | |
Constructs the Toeplitz matrix representing one-dimensional | |
convolution [1]_. See the notes below for details. | |
Parameters | |
---------- | |
a : (m,) array_like | |
The 1-D array to convolve. | |
n : int | |
The number of columns in the resulting matrix. It gives the length | |
of the input to be convolved with `a`. This is analogous to the | |
length of `v` in ``numpy.convolve(a, v)``. | |
mode : str | |
This is analogous to `mode` in ``numpy.convolve(v, a, mode)``. | |
It must be one of ('full', 'valid', 'same'). | |
See below for how `mode` determines the shape of the result. | |
Returns | |
------- | |
A : (k, n) ndarray | |
The convolution matrix whose row count `k` depends on `mode`:: | |
======= ========================= | |
mode k | |
======= ========================= | |
'full' m + n -1 | |
'same' max(m, n) | |
'valid' max(m, n) - min(m, n) + 1 | |
======= ========================= | |
See Also | |
-------- | |
toeplitz : Toeplitz matrix | |
Notes | |
----- | |
The code:: | |
A = convolution_matrix(a, n, mode) | |
creates a Toeplitz matrix `A` such that ``A @ v`` is equivalent to | |
using ``convolve(a, v, mode)``. The returned array always has `n` | |
columns. The number of rows depends on the specified `mode`, as | |
explained above. | |
In the default 'full' mode, the entries of `A` are given by:: | |
A[i, j] == (a[i-j] if (0 <= (i-j) < m) else 0) | |
where ``m = len(a)``. Suppose, for example, the input array is | |
``[x, y, z]``. The convolution matrix has the form:: | |
[x, 0, 0, ..., 0, 0] | |
[y, x, 0, ..., 0, 0] | |
[z, y, x, ..., 0, 0] | |
... | |
[0, 0, 0, ..., x, 0] | |
[0, 0, 0, ..., y, x] | |
[0, 0, 0, ..., z, y] | |
[0, 0, 0, ..., 0, z] | |
In 'valid' mode, the entries of `A` are given by:: | |
A[i, j] == (a[i-j+m-1] if (0 <= (i-j+m-1) < m) else 0) | |
This corresponds to a matrix whose rows are the subset of those from | |
the 'full' case where all the coefficients in `a` are contained in the | |
row. For input ``[x, y, z]``, this array looks like:: | |
[z, y, x, 0, 0, ..., 0, 0, 0] | |
[0, z, y, x, 0, ..., 0, 0, 0] | |
[0, 0, z, y, x, ..., 0, 0, 0] | |
... | |
[0, 0, 0, 0, 0, ..., x, 0, 0] | |
[0, 0, 0, 0, 0, ..., y, x, 0] | |
[0, 0, 0, 0, 0, ..., z, y, x] | |
In the 'same' mode, the entries of `A` are given by:: | |
d = (m - 1) // 2 | |
A[i, j] == (a[i-j+d] if (0 <= (i-j+d) < m) else 0) | |
The typical application of the 'same' mode is when one has a signal of | |
length `n` (with `n` greater than ``len(a)``), and the desired output | |
is a filtered signal that is still of length `n`. | |
For input ``[x, y, z]``, this array looks like:: | |
[y, x, 0, 0, ..., 0, 0, 0] | |
[z, y, x, 0, ..., 0, 0, 0] | |
[0, z, y, x, ..., 0, 0, 0] | |
[0, 0, z, y, ..., 0, 0, 0] | |
... | |
[0, 0, 0, 0, ..., y, x, 0] | |
[0, 0, 0, 0, ..., z, y, x] | |
[0, 0, 0, 0, ..., 0, z, y] | |
.. versionadded:: 1.5.0 | |
References | |
---------- | |
.. [1] "Convolution", https://en.wikipedia.org/wiki/Convolution | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import convolution_matrix | |
>>> A = convolution_matrix([-1, 4, -2], 5, mode='same') | |
>>> A | |
array([[ 4, -1, 0, 0, 0], | |
[-2, 4, -1, 0, 0], | |
[ 0, -2, 4, -1, 0], | |
[ 0, 0, -2, 4, -1], | |
[ 0, 0, 0, -2, 4]]) | |
Compare multiplication by `A` with the use of `numpy.convolve`. | |
>>> x = np.array([1, 2, 0, -3, 0.5]) | |
>>> A @ x | |
array([ 2. , 6. , -1. , -12.5, 8. ]) | |
Verify that ``A @ x`` produced the same result as applying the | |
convolution function. | |
>>> np.convolve([-1, 4, -2], x, mode='same') | |
array([ 2. , 6. , -1. , -12.5, 8. ]) | |
For comparison to the case ``mode='same'`` shown above, here are the | |
matrices produced by ``mode='full'`` and ``mode='valid'`` for the | |
same coefficients and size. | |
>>> convolution_matrix([-1, 4, -2], 5, mode='full') | |
array([[-1, 0, 0, 0, 0], | |
[ 4, -1, 0, 0, 0], | |
[-2, 4, -1, 0, 0], | |
[ 0, -2, 4, -1, 0], | |
[ 0, 0, -2, 4, -1], | |
[ 0, 0, 0, -2, 4], | |
[ 0, 0, 0, 0, -2]]) | |
>>> convolution_matrix([-1, 4, -2], 5, mode='valid') | |
array([[-2, 4, -1, 0, 0], | |
[ 0, -2, 4, -1, 0], | |
[ 0, 0, -2, 4, -1]]) | |
""" | |
if n <= 0: | |
raise ValueError('n must be a positive integer.') | |
a = np.asarray(a) | |
if a.ndim != 1: | |
raise ValueError('convolution_matrix expects a one-dimensional ' | |
'array as input') | |
if a.size == 0: | |
raise ValueError('len(a) must be at least 1.') | |
if mode not in ('full', 'valid', 'same'): | |
raise ValueError( | |
"'mode' argument must be one of ('full', 'valid', 'same')") | |
# create zero padded versions of the array | |
az = np.pad(a, (0, n-1), 'constant') | |
raz = np.pad(a[::-1], (0, n-1), 'constant') | |
if mode == 'same': | |
trim = min(n, len(a)) - 1 | |
tb = trim//2 | |
te = trim - tb | |
col0 = az[tb:len(az)-te] | |
row0 = raz[-n-tb:len(raz)-tb] | |
elif mode == 'valid': | |
tb = min(n, len(a)) - 1 | |
te = tb | |
col0 = az[tb:len(az)-te] | |
row0 = raz[-n-tb:len(raz)-tb] | |
else: # 'full' | |
col0 = az | |
row0 = raz[-n:] | |
return toeplitz(col0, row0) | |