peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/linalg
/tests
/test_sketches.py
"""Tests for _sketches.py.""" | |
import numpy as np | |
from numpy.testing import assert_, assert_equal | |
from scipy.linalg import clarkson_woodruff_transform | |
from scipy.linalg._sketches import cwt_matrix | |
from scipy.sparse import issparse, rand | |
from scipy.sparse.linalg import norm | |
class TestClarksonWoodruffTransform: | |
""" | |
Testing the Clarkson Woodruff Transform | |
""" | |
# set seed for generating test matrices | |
rng = np.random.RandomState(seed=1179103485) | |
# Test matrix parameters | |
n_rows = 2000 | |
n_cols = 100 | |
density = 0.1 | |
# Sketch matrix dimensions | |
n_sketch_rows = 200 | |
# Seeds to test with | |
seeds = [1755490010, 934377150, 1391612830, 1752708722, 2008891431, | |
1302443994, 1521083269, 1501189312, 1126232505, 1533465685] | |
A_dense = rng.randn(n_rows, n_cols) | |
A_csc = rand( | |
n_rows, n_cols, density=density, format='csc', random_state=rng, | |
) | |
A_csr = rand( | |
n_rows, n_cols, density=density, format='csr', random_state=rng, | |
) | |
A_coo = rand( | |
n_rows, n_cols, density=density, format='coo', random_state=rng, | |
) | |
# Collect the test matrices | |
test_matrices = [ | |
A_dense, A_csc, A_csr, A_coo, | |
] | |
# Test vector with norm ~1 | |
x = rng.randn(n_rows, 1) / np.sqrt(n_rows) | |
def test_sketch_dimensions(self): | |
for A in self.test_matrices: | |
for seed in self.seeds: | |
sketch = clarkson_woodruff_transform( | |
A, self.n_sketch_rows, seed=seed | |
) | |
assert_(sketch.shape == (self.n_sketch_rows, self.n_cols)) | |
def test_seed_returns_identical_transform_matrix(self): | |
for A in self.test_matrices: | |
for seed in self.seeds: | |
S1 = cwt_matrix( | |
self.n_sketch_rows, self.n_rows, seed=seed | |
).toarray() | |
S2 = cwt_matrix( | |
self.n_sketch_rows, self.n_rows, seed=seed | |
).toarray() | |
assert_equal(S1, S2) | |
def test_seed_returns_identically(self): | |
for A in self.test_matrices: | |
for seed in self.seeds: | |
sketch1 = clarkson_woodruff_transform( | |
A, self.n_sketch_rows, seed=seed | |
) | |
sketch2 = clarkson_woodruff_transform( | |
A, self.n_sketch_rows, seed=seed | |
) | |
if issparse(sketch1): | |
sketch1 = sketch1.toarray() | |
if issparse(sketch2): | |
sketch2 = sketch2.toarray() | |
assert_equal(sketch1, sketch2) | |
def test_sketch_preserves_frobenius_norm(self): | |
# Given the probabilistic nature of the sketches | |
# we run the test multiple times and check that | |
# we pass all/almost all the tries. | |
n_errors = 0 | |
for A in self.test_matrices: | |
if issparse(A): | |
true_norm = norm(A) | |
else: | |
true_norm = np.linalg.norm(A) | |
for seed in self.seeds: | |
sketch = clarkson_woodruff_transform( | |
A, self.n_sketch_rows, seed=seed, | |
) | |
if issparse(sketch): | |
sketch_norm = norm(sketch) | |
else: | |
sketch_norm = np.linalg.norm(sketch) | |
if np.abs(true_norm - sketch_norm) > 0.1 * true_norm: | |
n_errors += 1 | |
assert_(n_errors == 0) | |
def test_sketch_preserves_vector_norm(self): | |
n_errors = 0 | |
n_sketch_rows = int(np.ceil(2. / (0.01 * 0.5**2))) | |
true_norm = np.linalg.norm(self.x) | |
for seed in self.seeds: | |
sketch = clarkson_woodruff_transform( | |
self.x, n_sketch_rows, seed=seed, | |
) | |
sketch_norm = np.linalg.norm(sketch) | |
if np.abs(true_norm - sketch_norm) > 0.5 * true_norm: | |
n_errors += 1 | |
assert_(n_errors == 0) | |