peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/sparse
/_data.py
"""Base class for sparse matrice with a .data attribute | |
subclasses must provide a _with_data() method that | |
creates a new matrix with the same sparsity pattern | |
as self but with a different data array | |
""" | |
import numpy as np | |
from ._base import _spbase, _ufuncs_with_fixed_point_at_zero | |
from ._sputils import isscalarlike, validateaxis | |
__all__ = [] | |
# TODO implement all relevant operations | |
# use .data.__methods__() instead of /=, *=, etc. | |
class _data_matrix(_spbase): | |
def __init__(self): | |
_spbase.__init__(self) | |
def dtype(self): | |
return self.data.dtype | |
def dtype(self, newtype): | |
self.data.dtype = newtype | |
def _deduped_data(self): | |
if hasattr(self, 'sum_duplicates'): | |
self.sum_duplicates() | |
return self.data | |
def __abs__(self): | |
return self._with_data(abs(self._deduped_data())) | |
def __round__(self, ndigits=0): | |
return self._with_data(np.around(self._deduped_data(), decimals=ndigits)) | |
def _real(self): | |
return self._with_data(self.data.real) | |
def _imag(self): | |
return self._with_data(self.data.imag) | |
def __neg__(self): | |
if self.dtype.kind == 'b': | |
raise NotImplementedError('negating a boolean sparse array is not ' | |
'supported') | |
return self._with_data(-self.data) | |
def __imul__(self, other): # self *= other | |
if isscalarlike(other): | |
self.data *= other | |
return self | |
else: | |
return NotImplemented | |
def __itruediv__(self, other): # self /= other | |
if isscalarlike(other): | |
recip = 1.0 / other | |
self.data *= recip | |
return self | |
else: | |
return NotImplemented | |
def astype(self, dtype, casting='unsafe', copy=True): | |
dtype = np.dtype(dtype) | |
if self.dtype != dtype: | |
matrix = self._with_data( | |
self.data.astype(dtype, casting=casting, copy=True), | |
copy=True | |
) | |
return matrix._with_data(matrix._deduped_data(), copy=False) | |
elif copy: | |
return self.copy() | |
else: | |
return self | |
astype.__doc__ = _spbase.astype.__doc__ | |
def conjugate(self, copy=True): | |
if np.issubdtype(self.dtype, np.complexfloating): | |
return self._with_data(self.data.conjugate(), copy=copy) | |
elif copy: | |
return self.copy() | |
else: | |
return self | |
conjugate.__doc__ = _spbase.conjugate.__doc__ | |
def copy(self): | |
return self._with_data(self.data.copy(), copy=True) | |
copy.__doc__ = _spbase.copy.__doc__ | |
def count_nonzero(self): | |
return np.count_nonzero(self._deduped_data()) | |
count_nonzero.__doc__ = _spbase.count_nonzero.__doc__ | |
def power(self, n, dtype=None): | |
""" | |
This function performs element-wise power. | |
Parameters | |
---------- | |
n : scalar | |
n is a non-zero scalar (nonzero avoids dense ones creation) | |
If zero power is desired, special case it to use `np.ones` | |
dtype : If dtype is not specified, the current dtype will be preserved. | |
Raises | |
------ | |
NotImplementedError : if n is a zero scalar | |
If zero power is desired, special case it to use | |
`np.ones(A.shape, dtype=A.dtype)` | |
""" | |
if not isscalarlike(n): | |
raise NotImplementedError("input is not scalar") | |
if not n: | |
raise NotImplementedError( | |
"zero power is not supported as it would densify the matrix.\n" | |
"Use `np.ones(A.shape, dtype=A.dtype)` for this case." | |
) | |
data = self._deduped_data() | |
if dtype is not None: | |
data = data.astype(dtype) | |
return self._with_data(data ** n) | |
########################### | |
# Multiplication handlers # | |
########################### | |
def _mul_scalar(self, other): | |
return self._with_data(self.data * other) | |
# Add the numpy unary ufuncs for which func(0) = 0 to _data_matrix. | |
for npfunc in _ufuncs_with_fixed_point_at_zero: | |
name = npfunc.__name__ | |
def _create_method(op): | |
def method(self): | |
result = op(self._deduped_data()) | |
return self._with_data(result, copy=True) | |
method.__doc__ = (f"Element-wise {name}.\n\n" | |
f"See `numpy.{name}` for more information.") | |
method.__name__ = name | |
return method | |
setattr(_data_matrix, name, _create_method(npfunc)) | |
def _find_missing_index(ind, n): | |
for k, a in enumerate(ind): | |
if k != a: | |
return k | |
k += 1 | |
if k < n: | |
return k | |
else: | |
return -1 | |
class _minmax_mixin: | |
"""Mixin for min and max methods. | |
These are not implemented for dia_matrix, hence the separate class. | |
""" | |
def _min_or_max_axis(self, axis, min_or_max): | |
N = self.shape[axis] | |
if N == 0: | |
raise ValueError("zero-size array to reduction operation") | |
M = self.shape[1 - axis] | |
idx_dtype = self._get_index_dtype(maxval=M) | |
mat = self.tocsc() if axis == 0 else self.tocsr() | |
mat.sum_duplicates() | |
major_index, value = mat._minor_reduce(min_or_max) | |
not_full = np.diff(mat.indptr)[major_index] < N | |
value[not_full] = min_or_max(value[not_full], 0) | |
mask = value != 0 | |
major_index = np.compress(mask, major_index) | |
value = np.compress(mask, value) | |
if axis == 0: | |
return self._coo_container( | |
(value, (np.zeros(len(value), dtype=idx_dtype), major_index)), | |
dtype=self.dtype, shape=(1, M) | |
) | |
else: | |
return self._coo_container( | |
(value, (major_index, np.zeros(len(value), dtype=idx_dtype))), | |
dtype=self.dtype, shape=(M, 1) | |
) | |
def _min_or_max(self, axis, out, min_or_max): | |
if out is not None: | |
raise ValueError("Sparse arrays do not support an 'out' parameter.") | |
validateaxis(axis) | |
if self.ndim == 1: | |
if axis not in (None, 0, -1): | |
raise ValueError("axis out of range") | |
axis = None # avoid calling special axis case. no impact on 1d | |
if axis is None: | |
if 0 in self.shape: | |
raise ValueError("zero-size array to reduction operation") | |
zero = self.dtype.type(0) | |
if self.nnz == 0: | |
return zero | |
m = min_or_max.reduce(self._deduped_data().ravel()) | |
if self.nnz != np.prod(self.shape): | |
m = min_or_max(zero, m) | |
return m | |
if axis < 0: | |
axis += 2 | |
if (axis == 0) or (axis == 1): | |
return self._min_or_max_axis(axis, min_or_max) | |
else: | |
raise ValueError("axis out of range") | |
def _arg_min_or_max_axis(self, axis, argmin_or_argmax, compare): | |
if self.shape[axis] == 0: | |
raise ValueError("Cannot apply the operation along a zero-sized dimension.") | |
if axis < 0: | |
axis += 2 | |
zero = self.dtype.type(0) | |
mat = self.tocsc() if axis == 0 else self.tocsr() | |
mat.sum_duplicates() | |
ret_size, line_size = mat._swap(mat.shape) | |
ret = np.zeros(ret_size, dtype=int) | |
nz_lines, = np.nonzero(np.diff(mat.indptr)) | |
for i in nz_lines: | |
p, q = mat.indptr[i:i + 2] | |
data = mat.data[p:q] | |
indices = mat.indices[p:q] | |
extreme_index = argmin_or_argmax(data) | |
extreme_value = data[extreme_index] | |
if compare(extreme_value, zero) or q - p == line_size: | |
ret[i] = indices[extreme_index] | |
else: | |
zero_ind = _find_missing_index(indices, line_size) | |
if extreme_value == zero: | |
ret[i] = min(extreme_index, zero_ind) | |
else: | |
ret[i] = zero_ind | |
if axis == 1: | |
ret = ret.reshape(-1, 1) | |
return self._ascontainer(ret) | |
def _arg_min_or_max(self, axis, out, argmin_or_argmax, compare): | |
if out is not None: | |
raise ValueError("Sparse types do not support an 'out' parameter.") | |
validateaxis(axis) | |
if self.ndim == 1: | |
if axis not in (None, 0, -1): | |
raise ValueError("axis out of range") | |
axis = None # avoid calling special axis case. no impact on 1d | |
if axis is not None: | |
return self._arg_min_or_max_axis(axis, argmin_or_argmax, compare) | |
if 0 in self.shape: | |
raise ValueError("Cannot apply the operation to an empty matrix.") | |
if self.nnz == 0: | |
return 0 | |
zero = self.dtype.type(0) | |
mat = self.tocoo() | |
# Convert to canonical form: no duplicates, sorted indices. | |
mat.sum_duplicates() | |
extreme_index = argmin_or_argmax(mat.data) | |
extreme_value = mat.data[extreme_index] | |
num_col = mat.shape[-1] | |
# If the min value is less than zero, or max is greater than zero, | |
# then we do not need to worry about implicit zeros. | |
if compare(extreme_value, zero): | |
# cast to Python int to avoid overflow and RuntimeError | |
return int(mat.row[extreme_index]) * num_col + int(mat.col[extreme_index]) | |
# Cheap test for the rare case where we have no implicit zeros. | |
size = np.prod(self.shape) | |
if size == mat.nnz: | |
return int(mat.row[extreme_index]) * num_col + int(mat.col[extreme_index]) | |
# At this stage, any implicit zero could be the min or max value. | |
# After sum_duplicates(), the `row` and `col` arrays are guaranteed to | |
# be sorted in C-order, which means the linearized indices are sorted. | |
linear_indices = mat.row * num_col + mat.col | |
first_implicit_zero_index = _find_missing_index(linear_indices, size) | |
if extreme_value == zero: | |
return min(first_implicit_zero_index, extreme_index) | |
return first_implicit_zero_index | |
def max(self, axis=None, out=None): | |
""" | |
Return the maximum of the array/matrix or maximum along an axis. | |
This takes all elements into account, not just the non-zero ones. | |
Parameters | |
---------- | |
axis : {-2, -1, 0, 1, None} optional | |
Axis along which the sum is computed. The default is to | |
compute the maximum over all elements, returning | |
a scalar (i.e., `axis` = `None`). | |
out : None, optional | |
This argument is in the signature *solely* for NumPy | |
compatibility reasons. Do not pass in anything except | |
for the default value, as this argument is not used. | |
Returns | |
------- | |
amax : coo_matrix or scalar | |
Maximum of `a`. If `axis` is None, the result is a scalar value. | |
If `axis` is given, the result is a sparse.coo_matrix of dimension | |
``a.ndim - 1``. | |
See Also | |
-------- | |
min : The minimum value of a sparse array/matrix along a given axis. | |
numpy.matrix.max : NumPy's implementation of 'max' for matrices | |
""" | |
return self._min_or_max(axis, out, np.maximum) | |
def min(self, axis=None, out=None): | |
""" | |
Return the minimum of the array/matrix or maximum along an axis. | |
This takes all elements into account, not just the non-zero ones. | |
Parameters | |
---------- | |
axis : {-2, -1, 0, 1, None} optional | |
Axis along which the sum is computed. The default is to | |
compute the minimum over all elements, returning | |
a scalar (i.e., `axis` = `None`). | |
out : None, optional | |
This argument is in the signature *solely* for NumPy | |
compatibility reasons. Do not pass in anything except for | |
the default value, as this argument is not used. | |
Returns | |
------- | |
amin : coo_matrix or scalar | |
Minimum of `a`. If `axis` is None, the result is a scalar value. | |
If `axis` is given, the result is a sparse.coo_matrix of dimension | |
``a.ndim - 1``. | |
See Also | |
-------- | |
max : The maximum value of a sparse array/matrix along a given axis. | |
numpy.matrix.min : NumPy's implementation of 'min' for matrices | |
""" | |
return self._min_or_max(axis, out, np.minimum) | |
def nanmax(self, axis=None, out=None): | |
""" | |
Return the maximum of the array/matrix or maximum along an axis, ignoring any | |
NaNs. This takes all elements into account, not just the non-zero | |
ones. | |
.. versionadded:: 1.11.0 | |
Parameters | |
---------- | |
axis : {-2, -1, 0, 1, None} optional | |
Axis along which the maximum is computed. The default is to | |
compute the maximum over all elements, returning | |
a scalar (i.e., `axis` = `None`). | |
out : None, optional | |
This argument is in the signature *solely* for NumPy | |
compatibility reasons. Do not pass in anything except | |
for the default value, as this argument is not used. | |
Returns | |
------- | |
amax : coo_matrix or scalar | |
Maximum of `a`. If `axis` is None, the result is a scalar value. | |
If `axis` is given, the result is a sparse.coo_matrix of dimension | |
``a.ndim - 1``. | |
See Also | |
-------- | |
nanmin : The minimum value of a sparse array/matrix along a given axis, | |
ignoring NaNs. | |
max : The maximum value of a sparse array/matrix along a given axis, | |
propagating NaNs. | |
numpy.nanmax : NumPy's implementation of 'nanmax'. | |
""" | |
return self._min_or_max(axis, out, np.fmax) | |
def nanmin(self, axis=None, out=None): | |
""" | |
Return the minimum of the array/matrix or minimum along an axis, ignoring any | |
NaNs. This takes all elements into account, not just the non-zero | |
ones. | |
.. versionadded:: 1.11.0 | |
Parameters | |
---------- | |
axis : {-2, -1, 0, 1, None} optional | |
Axis along which the minimum is computed. The default is to | |
compute the minimum over all elements, returning | |
a scalar (i.e., `axis` = `None`). | |
out : None, optional | |
This argument is in the signature *solely* for NumPy | |
compatibility reasons. Do not pass in anything except for | |
the default value, as this argument is not used. | |
Returns | |
------- | |
amin : coo_matrix or scalar | |
Minimum of `a`. If `axis` is None, the result is a scalar value. | |
If `axis` is given, the result is a sparse.coo_matrix of dimension | |
``a.ndim - 1``. | |
See Also | |
-------- | |
nanmax : The maximum value of a sparse array/matrix along a given axis, | |
ignoring NaNs. | |
min : The minimum value of a sparse array/matrix along a given axis, | |
propagating NaNs. | |
numpy.nanmin : NumPy's implementation of 'nanmin'. | |
""" | |
return self._min_or_max(axis, out, np.fmin) | |
def argmax(self, axis=None, out=None): | |
"""Return indices of maximum elements along an axis. | |
Implicit zero elements are also taken into account. If there are | |
several maximum values, the index of the first occurrence is returned. | |
Parameters | |
---------- | |
axis : {-2, -1, 0, 1, None}, optional | |
Axis along which the argmax is computed. If None (default), index | |
of the maximum element in the flatten data is returned. | |
out : None, optional | |
This argument is in the signature *solely* for NumPy | |
compatibility reasons. Do not pass in anything except for | |
the default value, as this argument is not used. | |
Returns | |
------- | |
ind : numpy.matrix or int | |
Indices of maximum elements. If matrix, its size along `axis` is 1. | |
""" | |
return self._arg_min_or_max(axis, out, np.argmax, np.greater) | |
def argmin(self, axis=None, out=None): | |
"""Return indices of minimum elements along an axis. | |
Implicit zero elements are also taken into account. If there are | |
several minimum values, the index of the first occurrence is returned. | |
Parameters | |
---------- | |
axis : {-2, -1, 0, 1, None}, optional | |
Axis along which the argmin is computed. If None (default), index | |
of the minimum element in the flatten data is returned. | |
out : None, optional | |
This argument is in the signature *solely* for NumPy | |
compatibility reasons. Do not pass in anything except for | |
the default value, as this argument is not used. | |
Returns | |
------- | |
ind : numpy.matrix or int | |
Indices of minimum elements. If matrix, its size along `axis` is 1. | |
""" | |
return self._arg_min_or_max(axis, out, np.argmin, np.less) | |