peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/sparse
/_index.py
"""Indexing mixin for sparse array/matrix classes. | |
""" | |
from __future__ import annotations | |
from typing import TYPE_CHECKING | |
import numpy as np | |
from ._sputils import isintlike | |
if TYPE_CHECKING: | |
import numpy.typing as npt | |
INT_TYPES = (int, np.integer) | |
def _broadcast_arrays(a, b): | |
""" | |
Same as np.broadcast_arrays(a, b) but old writeability rules. | |
NumPy >= 1.17.0 transitions broadcast_arrays to return | |
read-only arrays. Set writeability explicitly to avoid warnings. | |
Retain the old writeability rules, as our Cython code assumes | |
the old behavior. | |
""" | |
x, y = np.broadcast_arrays(a, b) | |
x.flags.writeable = a.flags.writeable | |
y.flags.writeable = b.flags.writeable | |
return x, y | |
class IndexMixin: | |
""" | |
This class provides common dispatching and validation logic for indexing. | |
""" | |
def _raise_on_1d_array_slice(self): | |
"""We do not currently support 1D sparse arrays. | |
This function is called each time that a 1D array would | |
result, raising an error instead. | |
Once 1D sparse arrays are implemented, it should be removed. | |
""" | |
from scipy.sparse import sparray | |
if isinstance(self, sparray): | |
raise NotImplementedError( | |
'We have not yet implemented 1D sparse slices; ' | |
'please index using explicit indices, e.g. `x[:, [0]]`' | |
) | |
def __getitem__(self, key): | |
row, col = self._validate_indices(key) | |
# Dispatch to specialized methods. | |
if isinstance(row, INT_TYPES): | |
if isinstance(col, INT_TYPES): | |
return self._get_intXint(row, col) | |
elif isinstance(col, slice): | |
self._raise_on_1d_array_slice() | |
return self._get_intXslice(row, col) | |
elif col.ndim == 1: | |
self._raise_on_1d_array_slice() | |
return self._get_intXarray(row, col) | |
elif col.ndim == 2: | |
return self._get_intXarray(row, col) | |
raise IndexError('index results in >2 dimensions') | |
elif isinstance(row, slice): | |
if isinstance(col, INT_TYPES): | |
self._raise_on_1d_array_slice() | |
return self._get_sliceXint(row, col) | |
elif isinstance(col, slice): | |
if row == slice(None) and row == col: | |
return self.copy() | |
return self._get_sliceXslice(row, col) | |
elif col.ndim == 1: | |
return self._get_sliceXarray(row, col) | |
raise IndexError('index results in >2 dimensions') | |
elif row.ndim == 1: | |
if isinstance(col, INT_TYPES): | |
self._raise_on_1d_array_slice() | |
return self._get_arrayXint(row, col) | |
elif isinstance(col, slice): | |
return self._get_arrayXslice(row, col) | |
else: # row.ndim == 2 | |
if isinstance(col, INT_TYPES): | |
return self._get_arrayXint(row, col) | |
elif isinstance(col, slice): | |
raise IndexError('index results in >2 dimensions') | |
elif row.shape[1] == 1 and (col.ndim == 1 or col.shape[0] == 1): | |
# special case for outer indexing | |
return self._get_columnXarray(row[:,0], col.ravel()) | |
# The only remaining case is inner (fancy) indexing | |
row, col = _broadcast_arrays(row, col) | |
if row.shape != col.shape: | |
raise IndexError('number of row and column indices differ') | |
if row.size == 0: | |
return self.__class__(np.atleast_2d(row).shape, dtype=self.dtype) | |
return self._get_arrayXarray(row, col) | |
def __setitem__(self, key, x): | |
row, col = self._validate_indices(key) | |
if isinstance(row, INT_TYPES) and isinstance(col, INT_TYPES): | |
x = np.asarray(x, dtype=self.dtype) | |
if x.size != 1: | |
raise ValueError('Trying to assign a sequence to an item') | |
self._set_intXint(row, col, x.flat[0]) | |
return | |
if isinstance(row, slice): | |
row = np.arange(*row.indices(self.shape[0]))[:, None] | |
else: | |
row = np.atleast_1d(row) | |
if isinstance(col, slice): | |
col = np.arange(*col.indices(self.shape[1]))[None, :] | |
if row.ndim == 1: | |
row = row[:, None] | |
else: | |
col = np.atleast_1d(col) | |
i, j = _broadcast_arrays(row, col) | |
if i.shape != j.shape: | |
raise IndexError('number of row and column indices differ') | |
from ._base import issparse | |
if issparse(x): | |
if i.ndim == 1: | |
# Inner indexing, so treat them like row vectors. | |
i = i[None] | |
j = j[None] | |
broadcast_row = x.shape[0] == 1 and i.shape[0] != 1 | |
broadcast_col = x.shape[1] == 1 and i.shape[1] != 1 | |
if not ((broadcast_row or x.shape[0] == i.shape[0]) and | |
(broadcast_col or x.shape[1] == i.shape[1])): | |
raise ValueError('shape mismatch in assignment') | |
if x.shape[0] == 0 or x.shape[1] == 0: | |
return | |
x = x.tocoo(copy=True) | |
x.sum_duplicates() | |
self._set_arrayXarray_sparse(i, j, x) | |
else: | |
# Make x and i into the same shape | |
x = np.asarray(x, dtype=self.dtype) | |
if x.squeeze().shape != i.squeeze().shape: | |
x = np.broadcast_to(x, i.shape) | |
if x.size == 0: | |
return | |
x = x.reshape(i.shape) | |
self._set_arrayXarray(i, j, x) | |
def _validate_indices(self, key): | |
# First, check if indexing with single boolean matrix. | |
from ._base import _spbase | |
if (isinstance(key, (_spbase, np.ndarray)) and | |
key.ndim == 2 and key.dtype.kind == 'b'): | |
if key.shape != self.shape: | |
raise IndexError('boolean index shape does not match array shape') | |
row, col = key.nonzero() | |
else: | |
row, col = _unpack_index(key) | |
M, N = self.shape | |
def _validate_bool_idx( | |
idx: npt.NDArray[np.bool_], | |
axis_size: int, | |
axis_name: str | |
) -> npt.NDArray[np.int_]: | |
if len(idx) != axis_size: | |
raise IndexError( | |
f"boolean {axis_name} index has incorrect length: {len(idx)} " | |
f"instead of {axis_size}" | |
) | |
return _boolean_index_to_array(idx) | |
if isintlike(row): | |
row = int(row) | |
if row < -M or row >= M: | |
raise IndexError('row index (%d) out of range' % row) | |
if row < 0: | |
row += M | |
elif (bool_row := _compatible_boolean_index(row)) is not None: | |
row = _validate_bool_idx(bool_row, M, "row") | |
elif not isinstance(row, slice): | |
row = self._asindices(row, M) | |
if isintlike(col): | |
col = int(col) | |
if col < -N or col >= N: | |
raise IndexError('column index (%d) out of range' % col) | |
if col < 0: | |
col += N | |
elif (bool_col := _compatible_boolean_index(col)) is not None: | |
col = _validate_bool_idx(bool_col, N, "column") | |
elif not isinstance(col, slice): | |
col = self._asindices(col, N) | |
return row, col | |
def _asindices(self, idx, length): | |
"""Convert `idx` to a valid index for an axis with a given length. | |
Subclasses that need special validation can override this method. | |
""" | |
try: | |
x = np.asarray(idx) | |
except (ValueError, TypeError, MemoryError) as e: | |
raise IndexError('invalid index') from e | |
if x.ndim not in (1, 2): | |
raise IndexError('Index dimension must be 1 or 2') | |
if x.size == 0: | |
return x | |
# Check bounds | |
max_indx = x.max() | |
if max_indx >= length: | |
raise IndexError('index (%d) out of range' % max_indx) | |
min_indx = x.min() | |
if min_indx < 0: | |
if min_indx < -length: | |
raise IndexError('index (%d) out of range' % min_indx) | |
if x is idx or not x.flags.owndata: | |
x = x.copy() | |
x[x < 0] += length | |
return x | |
def _getrow(self, i): | |
"""Return a copy of row i of the matrix, as a (1 x n) row vector. | |
""" | |
M, N = self.shape | |
i = int(i) | |
if i < -M or i >= M: | |
raise IndexError('index (%d) out of range' % i) | |
if i < 0: | |
i += M | |
return self._get_intXslice(i, slice(None)) | |
def _getcol(self, i): | |
"""Return a copy of column i of the matrix, as a (m x 1) column vector. | |
""" | |
M, N = self.shape | |
i = int(i) | |
if i < -N or i >= N: | |
raise IndexError('index (%d) out of range' % i) | |
if i < 0: | |
i += N | |
return self._get_sliceXint(slice(None), i) | |
def _get_intXint(self, row, col): | |
raise NotImplementedError() | |
def _get_intXarray(self, row, col): | |
raise NotImplementedError() | |
def _get_intXslice(self, row, col): | |
raise NotImplementedError() | |
def _get_sliceXint(self, row, col): | |
raise NotImplementedError() | |
def _get_sliceXslice(self, row, col): | |
raise NotImplementedError() | |
def _get_sliceXarray(self, row, col): | |
raise NotImplementedError() | |
def _get_arrayXint(self, row, col): | |
raise NotImplementedError() | |
def _get_arrayXslice(self, row, col): | |
raise NotImplementedError() | |
def _get_columnXarray(self, row, col): | |
raise NotImplementedError() | |
def _get_arrayXarray(self, row, col): | |
raise NotImplementedError() | |
def _set_intXint(self, row, col, x): | |
raise NotImplementedError() | |
def _set_arrayXarray(self, row, col, x): | |
raise NotImplementedError() | |
def _set_arrayXarray_sparse(self, row, col, x): | |
# Fall back to densifying x | |
x = np.asarray(x.toarray(), dtype=self.dtype) | |
x, _ = _broadcast_arrays(x, row) | |
self._set_arrayXarray(row, col, x) | |
def _unpack_index(index) -> tuple[ | |
int | slice | npt.NDArray[np.bool_ | np.int_], | |
int | slice | npt.NDArray[np.bool_ | np.int_] | |
]: | |
""" Parse index. Always return a tuple of the form (row, col). | |
Valid type for row/col is integer, slice, array of bool, or array of integers. | |
""" | |
# Parse any ellipses. | |
index = _check_ellipsis(index) | |
# Next, parse the tuple or object | |
if isinstance(index, tuple): | |
if len(index) == 2: | |
row, col = index | |
elif len(index) == 1: | |
row, col = index[0], slice(None) | |
else: | |
raise IndexError('invalid number of indices') | |
else: | |
idx = _compatible_boolean_index(index) | |
if idx is None: | |
row, col = index, slice(None) | |
elif idx.ndim < 2: | |
return idx, slice(None) | |
elif idx.ndim == 2: | |
return idx.nonzero() | |
# Next, check for validity and transform the index as needed. | |
from ._base import issparse | |
if issparse(row) or issparse(col): | |
# Supporting sparse boolean indexing with both row and col does | |
# not work because spmatrix.ndim is always 2. | |
raise IndexError( | |
'Indexing with sparse matrices is not supported ' | |
'except boolean indexing where matrix and index ' | |
'are equal shapes.') | |
return row, col | |
def _check_ellipsis(index): | |
"""Process indices with Ellipsis. Returns modified index.""" | |
if index is Ellipsis: | |
return (slice(None), slice(None)) | |
if not isinstance(index, tuple): | |
return index | |
# Find any Ellipsis objects. | |
ellipsis_indices = [i for i, v in enumerate(index) if v is Ellipsis] | |
if not ellipsis_indices: | |
return index | |
if len(ellipsis_indices) > 1: | |
raise IndexError("an index can only have a single ellipsis ('...')") | |
# Replace the Ellipsis object with 0, 1, or 2 null-slices as needed. | |
i, = ellipsis_indices | |
num_slices = max(0, 3 - len(index)) | |
return index[:i] + (slice(None),) * num_slices + index[i + 1:] | |
def _maybe_bool_ndarray(idx): | |
"""Returns a compatible array if elements are boolean. | |
""" | |
idx = np.asanyarray(idx) | |
if idx.dtype.kind == 'b': | |
return idx | |
return None | |
def _first_element_bool(idx, max_dim=2): | |
"""Returns True if first element of the incompatible | |
array type is boolean. | |
""" | |
if max_dim < 1: | |
return None | |
try: | |
first = next(iter(idx), None) | |
except TypeError: | |
return None | |
if isinstance(first, bool): | |
return True | |
return _first_element_bool(first, max_dim-1) | |
def _compatible_boolean_index(idx): | |
"""Returns a boolean index array that can be converted to | |
integer array. Returns None if no such array exists. | |
""" | |
# Presence of attribute `ndim` indicates a compatible array type. | |
if hasattr(idx, 'ndim') or _first_element_bool(idx): | |
return _maybe_bool_ndarray(idx) | |
return None | |
def _boolean_index_to_array(idx): | |
if idx.ndim > 1: | |
raise IndexError('invalid index shape') | |
return np.where(idx)[0] | |