peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/sparse
/_lil.py
"""List of Lists sparse matrix class | |
""" | |
__docformat__ = "restructuredtext en" | |
__all__ = ['lil_array', 'lil_matrix', 'isspmatrix_lil'] | |
from bisect import bisect_left | |
import numpy as np | |
from ._matrix import spmatrix | |
from ._base import _spbase, sparray, issparse | |
from ._index import IndexMixin, INT_TYPES, _broadcast_arrays | |
from ._sputils import (getdtype, isshape, isscalarlike, upcast_scalar, | |
check_shape, check_reshape_kwargs) | |
from . import _csparsetools | |
class _lil_base(_spbase, IndexMixin): | |
_format = 'lil' | |
def __init__(self, arg1, shape=None, dtype=None, copy=False): | |
_spbase.__init__(self) | |
self.dtype = getdtype(dtype, arg1, default=float) | |
# First get the shape | |
if issparse(arg1): | |
if arg1.format == "lil" and copy: | |
A = arg1.copy() | |
else: | |
A = arg1.tolil() | |
if dtype is not None: | |
A = A.astype(dtype, copy=False) | |
self._shape = check_shape(A.shape) | |
self.dtype = A.dtype | |
self.rows = A.rows | |
self.data = A.data | |
elif isinstance(arg1,tuple): | |
if isshape(arg1): | |
if shape is not None: | |
raise ValueError('invalid use of shape parameter') | |
M, N = arg1 | |
self._shape = check_shape((M, N)) | |
self.rows = np.empty((M,), dtype=object) | |
self.data = np.empty((M,), dtype=object) | |
for i in range(M): | |
self.rows[i] = [] | |
self.data[i] = [] | |
else: | |
raise TypeError('unrecognized lil_array constructor usage') | |
else: | |
# assume A is dense | |
try: | |
A = self._ascontainer(arg1) | |
except TypeError as e: | |
raise TypeError('unsupported matrix type') from e | |
else: | |
A = self._csr_container(A, dtype=dtype).tolil() | |
self._shape = check_shape(A.shape) | |
self.dtype = A.dtype | |
self.rows = A.rows | |
self.data = A.data | |
def __iadd__(self,other): | |
self[:,:] = self + other | |
return self | |
def __isub__(self,other): | |
self[:,:] = self - other | |
return self | |
def __imul__(self,other): | |
if isscalarlike(other): | |
self[:,:] = self * other | |
return self | |
else: | |
return NotImplemented | |
def __itruediv__(self,other): | |
if isscalarlike(other): | |
self[:,:] = self / other | |
return self | |
else: | |
return NotImplemented | |
# Whenever the dimensions change, empty lists should be created for each | |
# row | |
def _getnnz(self, axis=None): | |
if axis is None: | |
return sum([len(rowvals) for rowvals in self.data]) | |
if axis < 0: | |
axis += 2 | |
if axis == 0: | |
out = np.zeros(self.shape[1], dtype=np.intp) | |
for row in self.rows: | |
out[row] += 1 | |
return out | |
elif axis == 1: | |
return np.array([len(rowvals) for rowvals in self.data], dtype=np.intp) | |
else: | |
raise ValueError('axis out of bounds') | |
def count_nonzero(self): | |
return sum(np.count_nonzero(rowvals) for rowvals in self.data) | |
_getnnz.__doc__ = _spbase._getnnz.__doc__ | |
count_nonzero.__doc__ = _spbase.count_nonzero.__doc__ | |
def __str__(self): | |
val = '' | |
for i, row in enumerate(self.rows): | |
for pos, j in enumerate(row): | |
val += f" {str((i, j))}\t{str(self.data[i][pos])}\n" | |
return val[:-1] | |
def getrowview(self, i): | |
"""Returns a view of the 'i'th row (without copying). | |
""" | |
new = self._lil_container((1, self.shape[1]), dtype=self.dtype) | |
new.rows[0] = self.rows[i] | |
new.data[0] = self.data[i] | |
return new | |
def getrow(self, i): | |
"""Returns a copy of the 'i'th row. | |
""" | |
M, N = self.shape | |
if i < 0: | |
i += M | |
if i < 0 or i >= M: | |
raise IndexError('row index out of bounds') | |
new = self._lil_container((1, N), dtype=self.dtype) | |
new.rows[0] = self.rows[i][:] | |
new.data[0] = self.data[i][:] | |
return new | |
def __getitem__(self, key): | |
# Fast path for simple (int, int) indexing. | |
if (isinstance(key, tuple) and len(key) == 2 and | |
isinstance(key[0], INT_TYPES) and | |
isinstance(key[1], INT_TYPES)): | |
# lil_get1 handles validation for us. | |
return self._get_intXint(*key) | |
# Everything else takes the normal path. | |
return IndexMixin.__getitem__(self, key) | |
def _asindices(self, idx, N): | |
# LIL routines handle bounds-checking for us, so don't do it here. | |
try: | |
x = np.asarray(idx) | |
except (ValueError, TypeError, MemoryError) as e: | |
raise IndexError('invalid index') from e | |
if x.ndim not in (1, 2): | |
raise IndexError('Index dimension must be <= 2') | |
return x | |
def _get_intXint(self, row, col): | |
v = _csparsetools.lil_get1(self.shape[0], self.shape[1], self.rows, | |
self.data, row, col) | |
return self.dtype.type(v) | |
def _get_sliceXint(self, row, col): | |
row = range(*row.indices(self.shape[0])) | |
return self._get_row_ranges(row, slice(col, col+1)) | |
def _get_arrayXint(self, row, col): | |
row = row.squeeze() | |
return self._get_row_ranges(row, slice(col, col+1)) | |
def _get_intXslice(self, row, col): | |
return self._get_row_ranges((row,), col) | |
def _get_sliceXslice(self, row, col): | |
row = range(*row.indices(self.shape[0])) | |
return self._get_row_ranges(row, col) | |
def _get_arrayXslice(self, row, col): | |
return self._get_row_ranges(row, col) | |
def _get_intXarray(self, row, col): | |
row = np.array(row, dtype=col.dtype, ndmin=1) | |
return self._get_columnXarray(row, col) | |
def _get_sliceXarray(self, row, col): | |
row = np.arange(*row.indices(self.shape[0])) | |
return self._get_columnXarray(row, col) | |
def _get_columnXarray(self, row, col): | |
# outer indexing | |
row, col = _broadcast_arrays(row[:,None], col) | |
return self._get_arrayXarray(row, col) | |
def _get_arrayXarray(self, row, col): | |
# inner indexing | |
i, j = map(np.atleast_2d, _prepare_index_for_memoryview(row, col)) | |
new = self._lil_container(i.shape, dtype=self.dtype) | |
_csparsetools.lil_fancy_get(self.shape[0], self.shape[1], | |
self.rows, self.data, | |
new.rows, new.data, | |
i, j) | |
return new | |
def _get_row_ranges(self, rows, col_slice): | |
""" | |
Fast path for indexing in the case where column index is slice. | |
This gains performance improvement over brute force by more | |
efficient skipping of zeros, by accessing the elements | |
column-wise in order. | |
Parameters | |
---------- | |
rows : sequence or range | |
Rows indexed. If range, must be within valid bounds. | |
col_slice : slice | |
Columns indexed | |
""" | |
j_start, j_stop, j_stride = col_slice.indices(self.shape[1]) | |
col_range = range(j_start, j_stop, j_stride) | |
nj = len(col_range) | |
new = self._lil_container((len(rows), nj), dtype=self.dtype) | |
_csparsetools.lil_get_row_ranges(self.shape[0], self.shape[1], | |
self.rows, self.data, | |
new.rows, new.data, | |
rows, | |
j_start, j_stop, j_stride, nj) | |
return new | |
def _set_intXint(self, row, col, x): | |
_csparsetools.lil_insert(self.shape[0], self.shape[1], self.rows, | |
self.data, row, col, x) | |
def _set_arrayXarray(self, row, col, x): | |
i, j, x = map(np.atleast_2d, _prepare_index_for_memoryview(row, col, x)) | |
_csparsetools.lil_fancy_set(self.shape[0], self.shape[1], | |
self.rows, self.data, | |
i, j, x) | |
def _set_arrayXarray_sparse(self, row, col, x): | |
# Fall back to densifying x | |
x = np.asarray(x.toarray(), dtype=self.dtype) | |
x, _ = _broadcast_arrays(x, row) | |
self._set_arrayXarray(row, col, x) | |
def __setitem__(self, key, x): | |
if isinstance(key, tuple) and len(key) == 2: | |
row, col = key | |
# Fast path for simple (int, int) indexing. | |
if isinstance(row, INT_TYPES) and isinstance(col, INT_TYPES): | |
x = self.dtype.type(x) | |
if x.size > 1: | |
raise ValueError("Trying to assign a sequence to an item") | |
return self._set_intXint(row, col, x) | |
# Fast path for full-matrix sparse assignment. | |
if (isinstance(row, slice) and isinstance(col, slice) and | |
row == slice(None) and col == slice(None) and | |
issparse(x) and x.shape == self.shape): | |
x = self._lil_container(x, dtype=self.dtype) | |
self.rows = x.rows | |
self.data = x.data | |
return | |
# Everything else takes the normal path. | |
IndexMixin.__setitem__(self, key, x) | |
def _mul_scalar(self, other): | |
if other == 0: | |
# Multiply by zero: return the zero matrix | |
new = self._lil_container(self.shape, dtype=self.dtype) | |
else: | |
res_dtype = upcast_scalar(self.dtype, other) | |
new = self.copy() | |
new = new.astype(res_dtype) | |
# Multiply this scalar by every element. | |
for j, rowvals in enumerate(new.data): | |
new.data[j] = [val*other for val in rowvals] | |
return new | |
def __truediv__(self, other): # self / other | |
if isscalarlike(other): | |
new = self.copy() | |
new.dtype = np.result_type(self, other) | |
# Divide every element by this scalar | |
for j, rowvals in enumerate(new.data): | |
new.data[j] = [val/other for val in rowvals] | |
return new | |
else: | |
return self.tocsr() / other | |
def copy(self): | |
M, N = self.shape | |
new = self._lil_container(self.shape, dtype=self.dtype) | |
# This is ~14x faster than calling deepcopy() on rows and data. | |
_csparsetools.lil_get_row_ranges(M, N, self.rows, self.data, | |
new.rows, new.data, range(M), | |
0, N, 1, N) | |
return new | |
copy.__doc__ = _spbase.copy.__doc__ | |
def reshape(self, *args, **kwargs): | |
shape = check_shape(args, self.shape) | |
order, copy = check_reshape_kwargs(kwargs) | |
# Return early if reshape is not required | |
if shape == self.shape: | |
if copy: | |
return self.copy() | |
else: | |
return self | |
new = self._lil_container(shape, dtype=self.dtype) | |
if order == 'C': | |
ncols = self.shape[1] | |
for i, row in enumerate(self.rows): | |
for col, j in enumerate(row): | |
new_r, new_c = np.unravel_index(i * ncols + j, shape) | |
new[new_r, new_c] = self[i, j] | |
elif order == 'F': | |
nrows = self.shape[0] | |
for i, row in enumerate(self.rows): | |
for col, j in enumerate(row): | |
new_r, new_c = np.unravel_index(i + j * nrows, shape, order) | |
new[new_r, new_c] = self[i, j] | |
else: | |
raise ValueError("'order' must be 'C' or 'F'") | |
return new | |
reshape.__doc__ = _spbase.reshape.__doc__ | |
def resize(self, *shape): | |
shape = check_shape(shape) | |
new_M, new_N = shape | |
M, N = self.shape | |
if new_M < M: | |
self.rows = self.rows[:new_M] | |
self.data = self.data[:new_M] | |
elif new_M > M: | |
self.rows = np.resize(self.rows, new_M) | |
self.data = np.resize(self.data, new_M) | |
for i in range(M, new_M): | |
self.rows[i] = [] | |
self.data[i] = [] | |
if new_N < N: | |
for row, data in zip(self.rows, self.data): | |
trunc = bisect_left(row, new_N) | |
del row[trunc:] | |
del data[trunc:] | |
self._shape = shape | |
resize.__doc__ = _spbase.resize.__doc__ | |
def toarray(self, order=None, out=None): | |
d = self._process_toarray_args(order, out) | |
for i, row in enumerate(self.rows): | |
for pos, j in enumerate(row): | |
d[i, j] = self.data[i][pos] | |
return d | |
toarray.__doc__ = _spbase.toarray.__doc__ | |
def transpose(self, axes=None, copy=False): | |
return self.tocsr(copy=copy).transpose(axes=axes, copy=False).tolil(copy=False) | |
transpose.__doc__ = _spbase.transpose.__doc__ | |
def tolil(self, copy=False): | |
if copy: | |
return self.copy() | |
else: | |
return self | |
tolil.__doc__ = _spbase.tolil.__doc__ | |
def tocsr(self, copy=False): | |
M, N = self.shape | |
if M == 0 or N == 0: | |
return self._csr_container((M, N), dtype=self.dtype) | |
# construct indptr array | |
if M*N <= np.iinfo(np.int32).max: | |
# fast path: it is known that 64-bit indexing will not be needed. | |
idx_dtype = np.int32 | |
indptr = np.empty(M + 1, dtype=idx_dtype) | |
indptr[0] = 0 | |
_csparsetools.lil_get_lengths(self.rows, indptr[1:]) | |
np.cumsum(indptr, out=indptr) | |
nnz = indptr[-1] | |
else: | |
idx_dtype = self._get_index_dtype(maxval=N) | |
lengths = np.empty(M, dtype=idx_dtype) | |
_csparsetools.lil_get_lengths(self.rows, lengths) | |
nnz = lengths.sum(dtype=np.int64) | |
idx_dtype = self._get_index_dtype(maxval=max(N, nnz)) | |
indptr = np.empty(M + 1, dtype=idx_dtype) | |
indptr[0] = 0 | |
np.cumsum(lengths, dtype=idx_dtype, out=indptr[1:]) | |
indices = np.empty(nnz, dtype=idx_dtype) | |
data = np.empty(nnz, dtype=self.dtype) | |
_csparsetools.lil_flatten_to_array(self.rows, indices) | |
_csparsetools.lil_flatten_to_array(self.data, data) | |
# init csr matrix | |
return self._csr_container((data, indices, indptr), shape=self.shape) | |
tocsr.__doc__ = _spbase.tocsr.__doc__ | |
def _prepare_index_for_memoryview(i, j, x=None): | |
""" | |
Convert index and data arrays to form suitable for passing to the | |
Cython fancy getset routines. | |
The conversions are necessary since to (i) ensure the integer | |
index arrays are in one of the accepted types, and (ii) to ensure | |
the arrays are writable so that Cython memoryview support doesn't | |
choke on them. | |
Parameters | |
---------- | |
i, j | |
Index arrays | |
x : optional | |
Data arrays | |
Returns | |
------- | |
i, j, x | |
Re-formatted arrays (x is omitted, if input was None) | |
""" | |
if i.dtype > j.dtype: | |
j = j.astype(i.dtype) | |
elif i.dtype < j.dtype: | |
i = i.astype(j.dtype) | |
if not i.flags.writeable or i.dtype not in (np.int32, np.int64): | |
i = i.astype(np.intp) | |
if not j.flags.writeable or j.dtype not in (np.int32, np.int64): | |
j = j.astype(np.intp) | |
if x is not None: | |
if not x.flags.writeable: | |
x = x.copy() | |
return i, j, x | |
else: | |
return i, j | |
def isspmatrix_lil(x): | |
"""Is `x` of lil_matrix type? | |
Parameters | |
---------- | |
x | |
object to check for being a lil matrix | |
Returns | |
------- | |
bool | |
True if `x` is a lil matrix, False otherwise | |
Examples | |
-------- | |
>>> from scipy.sparse import lil_array, lil_matrix, coo_matrix, isspmatrix_lil | |
>>> isspmatrix_lil(lil_matrix([[5]])) | |
True | |
>>> isspmatrix_lil(lil_array([[5]])) | |
False | |
>>> isspmatrix_lil(coo_matrix([[5]])) | |
False | |
""" | |
return isinstance(x, lil_matrix) | |
# This namespace class separates array from matrix with isinstance | |
class lil_array(_lil_base, sparray): | |
""" | |
Row-based LIst of Lists sparse array. | |
This is a structure for constructing sparse arrays incrementally. | |
Note that inserting a single item can take linear time in the worst case; | |
to construct the array efficiently, make sure the items are pre-sorted by | |
index, per row. | |
This can be instantiated in several ways: | |
lil_array(D) | |
where D is a 2-D ndarray | |
lil_array(S) | |
with another sparse array or matrix S (equivalent to S.tolil()) | |
lil_array((M, N), [dtype]) | |
to construct an empty array with shape (M, N) | |
dtype is optional, defaulting to dtype='d'. | |
Attributes | |
---------- | |
dtype : dtype | |
Data type of the array | |
shape : 2-tuple | |
Shape of the array | |
ndim : int | |
Number of dimensions (this is always 2) | |
nnz | |
size | |
data | |
LIL format data array of the array | |
rows | |
LIL format row index array of the array | |
T | |
Notes | |
----- | |
Sparse arrays can be used in arithmetic operations: they support | |
addition, subtraction, multiplication, division, and matrix power. | |
Advantages of the LIL format | |
- supports flexible slicing | |
- changes to the array sparsity structure are efficient | |
Disadvantages of the LIL format | |
- arithmetic operations LIL + LIL are slow (consider CSR or CSC) | |
- slow column slicing (consider CSC) | |
- slow matrix vector products (consider CSR or CSC) | |
Intended Usage | |
- LIL is a convenient format for constructing sparse arrays | |
- once an array has been constructed, convert to CSR or | |
CSC format for fast arithmetic and matrix vector operations | |
- consider using the COO format when constructing large arrays | |
Data Structure | |
- An array (``self.rows``) of rows, each of which is a sorted | |
list of column indices of non-zero elements. | |
- The corresponding nonzero values are stored in similar | |
fashion in ``self.data``. | |
""" | |
class lil_matrix(spmatrix, _lil_base): | |
""" | |
Row-based LIst of Lists sparse matrix. | |
This is a structure for constructing sparse matrices incrementally. | |
Note that inserting a single item can take linear time in the worst case; | |
to construct the matrix efficiently, make sure the items are pre-sorted by | |
index, per row. | |
This can be instantiated in several ways: | |
lil_matrix(D) | |
where D is a 2-D ndarray | |
lil_matrix(S) | |
with another sparse array or matrix S (equivalent to S.tolil()) | |
lil_matrix((M, N), [dtype]) | |
to construct an empty matrix with shape (M, N) | |
dtype is optional, defaulting to dtype='d'. | |
Attributes | |
---------- | |
dtype : dtype | |
Data type of the matrix | |
shape : 2-tuple | |
Shape of the matrix | |
ndim : int | |
Number of dimensions (this is always 2) | |
nnz | |
size | |
data | |
LIL format data array of the matrix | |
rows | |
LIL format row index array of the matrix | |
T | |
Notes | |
----- | |
Sparse matrices can be used in arithmetic operations: they support | |
addition, subtraction, multiplication, division, and matrix power. | |
Advantages of the LIL format | |
- supports flexible slicing | |
- changes to the matrix sparsity structure are efficient | |
Disadvantages of the LIL format | |
- arithmetic operations LIL + LIL are slow (consider CSR or CSC) | |
- slow column slicing (consider CSC) | |
- slow matrix vector products (consider CSR or CSC) | |
Intended Usage | |
- LIL is a convenient format for constructing sparse matrices | |
- once a matrix has been constructed, convert to CSR or | |
CSC format for fast arithmetic and matrix vector operations | |
- consider using the COO format when constructing large matrices | |
Data Structure | |
- An array (``self.rows``) of rows, each of which is a sorted | |
list of column indices of non-zero elements. | |
- The corresponding nonzero values are stored in similar | |
fashion in ``self.data``. | |
""" | |