peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/sparse
/csgraph
/_laplacian.py
""" | |
Laplacian of a compressed-sparse graph | |
""" | |
import numpy as np | |
from scipy.sparse import issparse | |
from scipy.sparse.linalg import LinearOperator | |
from scipy.sparse._sputils import convert_pydata_sparse_to_scipy, is_pydata_spmatrix | |
############################################################################### | |
# Graph laplacian | |
def laplacian( | |
csgraph, | |
normed=False, | |
return_diag=False, | |
use_out_degree=False, | |
*, | |
copy=True, | |
form="array", | |
dtype=None, | |
symmetrized=False, | |
): | |
""" | |
Return the Laplacian of a directed graph. | |
Parameters | |
---------- | |
csgraph : array_like or sparse matrix, 2 dimensions | |
compressed-sparse graph, with shape (N, N). | |
normed : bool, optional | |
If True, then compute symmetrically normalized Laplacian. | |
Default: False. | |
return_diag : bool, optional | |
If True, then also return an array related to vertex degrees. | |
Default: False. | |
use_out_degree : bool, optional | |
If True, then use out-degree instead of in-degree. | |
This distinction matters only if the graph is asymmetric. | |
Default: False. | |
copy: bool, optional | |
If False, then change `csgraph` in place if possible, | |
avoiding doubling the memory use. | |
Default: True, for backward compatibility. | |
form: 'array', or 'function', or 'lo' | |
Determines the format of the output Laplacian: | |
* 'array' is a numpy array; | |
* 'function' is a pointer to evaluating the Laplacian-vector | |
or Laplacian-matrix product; | |
* 'lo' results in the format of the `LinearOperator`. | |
Choosing 'function' or 'lo' always avoids doubling | |
the memory use, ignoring `copy` value. | |
Default: 'array', for backward compatibility. | |
dtype: None or one of numeric numpy dtypes, optional | |
The dtype of the output. If ``dtype=None``, the dtype of the | |
output matches the dtype of the input csgraph, except for | |
the case ``normed=True`` and integer-like csgraph, where | |
the output dtype is 'float' allowing accurate normalization, | |
but dramatically increasing the memory use. | |
Default: None, for backward compatibility. | |
symmetrized: bool, optional | |
If True, then the output Laplacian is symmetric/Hermitian. | |
The symmetrization is done by ``csgraph + csgraph.T.conj`` | |
without dividing by 2 to preserve integer dtypes if possible | |
prior to the construction of the Laplacian. | |
The symmetrization will increase the memory footprint of | |
sparse matrices unless the sparsity pattern is symmetric or | |
`form` is 'function' or 'lo'. | |
Default: False, for backward compatibility. | |
Returns | |
------- | |
lap : ndarray, or sparse matrix, or `LinearOperator` | |
The N x N Laplacian of csgraph. It will be a NumPy array (dense) | |
if the input was dense, or a sparse matrix otherwise, or | |
the format of a function or `LinearOperator` if | |
`form` equals 'function' or 'lo', respectively. | |
diag : ndarray, optional | |
The length-N main diagonal of the Laplacian matrix. | |
For the normalized Laplacian, this is the array of square roots | |
of vertex degrees or 1 if the degree is zero. | |
Notes | |
----- | |
The Laplacian matrix of a graph is sometimes referred to as the | |
"Kirchhoff matrix" or just the "Laplacian", and is useful in many | |
parts of spectral graph theory. | |
In particular, the eigen-decomposition of the Laplacian can give | |
insight into many properties of the graph, e.g., | |
is commonly used for spectral data embedding and clustering. | |
The constructed Laplacian doubles the memory use if ``copy=True`` and | |
``form="array"`` which is the default. | |
Choosing ``copy=False`` has no effect unless ``form="array"`` | |
or the matrix is sparse in the ``coo`` format, or dense array, except | |
for the integer input with ``normed=True`` that forces the float output. | |
Sparse input is reformatted into ``coo`` if ``form="array"``, | |
which is the default. | |
If the input adjacency matrix is not symmetric, the Laplacian is | |
also non-symmetric unless ``symmetrized=True`` is used. | |
Diagonal entries of the input adjacency matrix are ignored and | |
replaced with zeros for the purpose of normalization where ``normed=True``. | |
The normalization uses the inverse square roots of row-sums of the input | |
adjacency matrix, and thus may fail if the row-sums contain | |
negative or complex with a non-zero imaginary part values. | |
The normalization is symmetric, making the normalized Laplacian also | |
symmetric if the input csgraph was symmetric. | |
References | |
---------- | |
.. [1] Laplacian matrix. https://en.wikipedia.org/wiki/Laplacian_matrix | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.sparse import csgraph | |
Our first illustration is the symmetric graph | |
>>> G = np.arange(4) * np.arange(4)[:, np.newaxis] | |
>>> G | |
array([[0, 0, 0, 0], | |
[0, 1, 2, 3], | |
[0, 2, 4, 6], | |
[0, 3, 6, 9]]) | |
and its symmetric Laplacian matrix | |
>>> csgraph.laplacian(G) | |
array([[ 0, 0, 0, 0], | |
[ 0, 5, -2, -3], | |
[ 0, -2, 8, -6], | |
[ 0, -3, -6, 9]]) | |
The non-symmetric graph | |
>>> G = np.arange(9).reshape(3, 3) | |
>>> G | |
array([[0, 1, 2], | |
[3, 4, 5], | |
[6, 7, 8]]) | |
has different row- and column sums, resulting in two varieties | |
of the Laplacian matrix, using an in-degree, which is the default | |
>>> L_in_degree = csgraph.laplacian(G) | |
>>> L_in_degree | |
array([[ 9, -1, -2], | |
[-3, 8, -5], | |
[-6, -7, 7]]) | |
or alternatively an out-degree | |
>>> L_out_degree = csgraph.laplacian(G, use_out_degree=True) | |
>>> L_out_degree | |
array([[ 3, -1, -2], | |
[-3, 8, -5], | |
[-6, -7, 13]]) | |
Constructing a symmetric Laplacian matrix, one can add the two as | |
>>> L_in_degree + L_out_degree.T | |
array([[ 12, -4, -8], | |
[ -4, 16, -12], | |
[ -8, -12, 20]]) | |
or use the ``symmetrized=True`` option | |
>>> csgraph.laplacian(G, symmetrized=True) | |
array([[ 12, -4, -8], | |
[ -4, 16, -12], | |
[ -8, -12, 20]]) | |
that is equivalent to symmetrizing the original graph | |
>>> csgraph.laplacian(G + G.T) | |
array([[ 12, -4, -8], | |
[ -4, 16, -12], | |
[ -8, -12, 20]]) | |
The goal of normalization is to make the non-zero diagonal entries | |
of the Laplacian matrix to be all unit, also scaling off-diagonal | |
entries correspondingly. The normalization can be done manually, e.g., | |
>>> G = np.array([[0, 1, 1], [1, 0, 1], [1, 1, 0]]) | |
>>> L, d = csgraph.laplacian(G, return_diag=True) | |
>>> L | |
array([[ 2, -1, -1], | |
[-1, 2, -1], | |
[-1, -1, 2]]) | |
>>> d | |
array([2, 2, 2]) | |
>>> scaling = np.sqrt(d) | |
>>> scaling | |
array([1.41421356, 1.41421356, 1.41421356]) | |
>>> (1/scaling)*L*(1/scaling) | |
array([[ 1. , -0.5, -0.5], | |
[-0.5, 1. , -0.5], | |
[-0.5, -0.5, 1. ]]) | |
Or using ``normed=True`` option | |
>>> L, d = csgraph.laplacian(G, return_diag=True, normed=True) | |
>>> L | |
array([[ 1. , -0.5, -0.5], | |
[-0.5, 1. , -0.5], | |
[-0.5, -0.5, 1. ]]) | |
which now instead of the diagonal returns the scaling coefficients | |
>>> d | |
array([1.41421356, 1.41421356, 1.41421356]) | |
Zero scaling coefficients are substituted with 1s, where scaling | |
has thus no effect, e.g., | |
>>> G = np.array([[0, 0, 0], [0, 0, 1], [0, 1, 0]]) | |
>>> G | |
array([[0, 0, 0], | |
[0, 0, 1], | |
[0, 1, 0]]) | |
>>> L, d = csgraph.laplacian(G, return_diag=True, normed=True) | |
>>> L | |
array([[ 0., -0., -0.], | |
[-0., 1., -1.], | |
[-0., -1., 1.]]) | |
>>> d | |
array([1., 1., 1.]) | |
Only the symmetric normalization is implemented, resulting | |
in a symmetric Laplacian matrix if and only if its graph is symmetric | |
and has all non-negative degrees, like in the examples above. | |
The output Laplacian matrix is by default a dense array or a sparse matrix | |
inferring its shape, format, and dtype from the input graph matrix: | |
>>> G = np.array([[0, 1, 1], [1, 0, 1], [1, 1, 0]]).astype(np.float32) | |
>>> G | |
array([[0., 1., 1.], | |
[1., 0., 1.], | |
[1., 1., 0.]], dtype=float32) | |
>>> csgraph.laplacian(G) | |
array([[ 2., -1., -1.], | |
[-1., 2., -1.], | |
[-1., -1., 2.]], dtype=float32) | |
but can alternatively be generated matrix-free as a LinearOperator: | |
>>> L = csgraph.laplacian(G, form="lo") | |
>>> L | |
<3x3 _CustomLinearOperator with dtype=float32> | |
>>> L(np.eye(3)) | |
array([[ 2., -1., -1.], | |
[-1., 2., -1.], | |
[-1., -1., 2.]]) | |
or as a lambda-function: | |
>>> L = csgraph.laplacian(G, form="function") | |
>>> L | |
<function _laplace.<locals>.<lambda> at 0x0000012AE6F5A598> | |
>>> L(np.eye(3)) | |
array([[ 2., -1., -1.], | |
[-1., 2., -1.], | |
[-1., -1., 2.]]) | |
The Laplacian matrix is used for | |
spectral data clustering and embedding | |
as well as for spectral graph partitioning. | |
Our final example illustrates the latter | |
for a noisy directed linear graph. | |
>>> from scipy.sparse import diags, random | |
>>> from scipy.sparse.linalg import lobpcg | |
Create a directed linear graph with ``N=35`` vertices | |
using a sparse adjacency matrix ``G``: | |
>>> N = 35 | |
>>> G = diags(np.ones(N-1), 1, format="csr") | |
Fix a random seed ``rng`` and add a random sparse noise to the graph ``G``: | |
>>> rng = np.random.default_rng() | |
>>> G += 1e-2 * random(N, N, density=0.1, random_state=rng) | |
Set initial approximations for eigenvectors: | |
>>> X = rng.random((N, 2)) | |
The constant vector of ones is always a trivial eigenvector | |
of the non-normalized Laplacian to be filtered out: | |
>>> Y = np.ones((N, 1)) | |
Alternating (1) the sign of the graph weights allows determining | |
labels for spectral max- and min- cuts in a single loop. | |
Since the graph is undirected, the option ``symmetrized=True`` | |
must be used in the construction of the Laplacian. | |
The option ``normed=True`` cannot be used in (2) for the negative weights | |
here as the symmetric normalization evaluates square roots. | |
The option ``form="lo"`` in (2) is matrix-free, i.e., guarantees | |
a fixed memory footprint and read-only access to the graph. | |
Calling the eigenvalue solver ``lobpcg`` (3) computes the Fiedler vector | |
that determines the labels as the signs of its components in (5). | |
Since the sign in an eigenvector is not deterministic and can flip, | |
we fix the sign of the first component to be always +1 in (4). | |
>>> for cut in ["max", "min"]: | |
... G = -G # 1. | |
... L = csgraph.laplacian(G, symmetrized=True, form="lo") # 2. | |
... _, eves = lobpcg(L, X, Y=Y, largest=False, tol=1e-3) # 3. | |
... eves *= np.sign(eves[0, 0]) # 4. | |
... print(cut + "-cut labels:\\n", 1 * (eves[:, 0]>0)) # 5. | |
max-cut labels: | |
[1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1] | |
min-cut labels: | |
[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] | |
As anticipated for a (slightly noisy) linear graph, | |
the max-cut strips all the edges of the graph coloring all | |
odd vertices into one color and all even vertices into another one, | |
while the balanced min-cut partitions the graph | |
in the middle by deleting a single edge. | |
Both determined partitions are optimal. | |
""" | |
is_pydata_sparse = is_pydata_spmatrix(csgraph) | |
if is_pydata_sparse: | |
pydata_sparse_cls = csgraph.__class__ | |
csgraph = convert_pydata_sparse_to_scipy(csgraph) | |
if csgraph.ndim != 2 or csgraph.shape[0] != csgraph.shape[1]: | |
raise ValueError('csgraph must be a square matrix or array') | |
if normed and ( | |
np.issubdtype(csgraph.dtype, np.signedinteger) | |
or np.issubdtype(csgraph.dtype, np.uint) | |
): | |
csgraph = csgraph.astype(np.float64) | |
if form == "array": | |
create_lap = ( | |
_laplacian_sparse if issparse(csgraph) else _laplacian_dense | |
) | |
else: | |
create_lap = ( | |
_laplacian_sparse_flo | |
if issparse(csgraph) | |
else _laplacian_dense_flo | |
) | |
degree_axis = 1 if use_out_degree else 0 | |
lap, d = create_lap( | |
csgraph, | |
normed=normed, | |
axis=degree_axis, | |
copy=copy, | |
form=form, | |
dtype=dtype, | |
symmetrized=symmetrized, | |
) | |
if is_pydata_sparse: | |
lap = pydata_sparse_cls.from_scipy_sparse(lap) | |
if return_diag: | |
return lap, d | |
return lap | |
def _setdiag_dense(m, d): | |
step = len(d) + 1 | |
m.flat[::step] = d | |
def _laplace(m, d): | |
return lambda v: v * d[:, np.newaxis] - m @ v | |
def _laplace_normed(m, d, nd): | |
laplace = _laplace(m, d) | |
return lambda v: nd[:, np.newaxis] * laplace(v * nd[:, np.newaxis]) | |
def _laplace_sym(m, d): | |
return ( | |
lambda v: v * d[:, np.newaxis] | |
- m @ v | |
- np.transpose(np.conjugate(np.transpose(np.conjugate(v)) @ m)) | |
) | |
def _laplace_normed_sym(m, d, nd): | |
laplace_sym = _laplace_sym(m, d) | |
return lambda v: nd[:, np.newaxis] * laplace_sym(v * nd[:, np.newaxis]) | |
def _linearoperator(mv, shape, dtype): | |
return LinearOperator(matvec=mv, matmat=mv, shape=shape, dtype=dtype) | |
def _laplacian_sparse_flo(graph, normed, axis, copy, form, dtype, symmetrized): | |
# The keyword argument `copy` is unused and has no effect here. | |
del copy | |
if dtype is None: | |
dtype = graph.dtype | |
graph_sum = np.asarray(graph.sum(axis=axis)).ravel() | |
graph_diagonal = graph.diagonal() | |
diag = graph_sum - graph_diagonal | |
if symmetrized: | |
graph_sum += np.asarray(graph.sum(axis=1 - axis)).ravel() | |
diag = graph_sum - graph_diagonal - graph_diagonal | |
if normed: | |
isolated_node_mask = diag == 0 | |
w = np.where(isolated_node_mask, 1, np.sqrt(diag)) | |
if symmetrized: | |
md = _laplace_normed_sym(graph, graph_sum, 1.0 / w) | |
else: | |
md = _laplace_normed(graph, graph_sum, 1.0 / w) | |
if form == "function": | |
return md, w.astype(dtype, copy=False) | |
elif form == "lo": | |
m = _linearoperator(md, shape=graph.shape, dtype=dtype) | |
return m, w.astype(dtype, copy=False) | |
else: | |
raise ValueError(f"Invalid form: {form!r}") | |
else: | |
if symmetrized: | |
md = _laplace_sym(graph, graph_sum) | |
else: | |
md = _laplace(graph, graph_sum) | |
if form == "function": | |
return md, diag.astype(dtype, copy=False) | |
elif form == "lo": | |
m = _linearoperator(md, shape=graph.shape, dtype=dtype) | |
return m, diag.astype(dtype, copy=False) | |
else: | |
raise ValueError(f"Invalid form: {form!r}") | |
def _laplacian_sparse(graph, normed, axis, copy, form, dtype, symmetrized): | |
# The keyword argument `form` is unused and has no effect here. | |
del form | |
if dtype is None: | |
dtype = graph.dtype | |
needs_copy = False | |
if graph.format in ('lil', 'dok'): | |
m = graph.tocoo() | |
else: | |
m = graph | |
if copy: | |
needs_copy = True | |
if symmetrized: | |
m += m.T.conj() | |
w = np.asarray(m.sum(axis=axis)).ravel() - m.diagonal() | |
if normed: | |
m = m.tocoo(copy=needs_copy) | |
isolated_node_mask = (w == 0) | |
w = np.where(isolated_node_mask, 1, np.sqrt(w)) | |
m.data /= w[m.row] | |
m.data /= w[m.col] | |
m.data *= -1 | |
m.setdiag(1 - isolated_node_mask) | |
else: | |
if m.format == 'dia': | |
m = m.copy() | |
else: | |
m = m.tocoo(copy=needs_copy) | |
m.data *= -1 | |
m.setdiag(w) | |
return m.astype(dtype, copy=False), w.astype(dtype) | |
def _laplacian_dense_flo(graph, normed, axis, copy, form, dtype, symmetrized): | |
if copy: | |
m = np.array(graph) | |
else: | |
m = np.asarray(graph) | |
if dtype is None: | |
dtype = m.dtype | |
graph_sum = m.sum(axis=axis) | |
graph_diagonal = m.diagonal() | |
diag = graph_sum - graph_diagonal | |
if symmetrized: | |
graph_sum += m.sum(axis=1 - axis) | |
diag = graph_sum - graph_diagonal - graph_diagonal | |
if normed: | |
isolated_node_mask = diag == 0 | |
w = np.where(isolated_node_mask, 1, np.sqrt(diag)) | |
if symmetrized: | |
md = _laplace_normed_sym(m, graph_sum, 1.0 / w) | |
else: | |
md = _laplace_normed(m, graph_sum, 1.0 / w) | |
if form == "function": | |
return md, w.astype(dtype, copy=False) | |
elif form == "lo": | |
m = _linearoperator(md, shape=graph.shape, dtype=dtype) | |
return m, w.astype(dtype, copy=False) | |
else: | |
raise ValueError(f"Invalid form: {form!r}") | |
else: | |
if symmetrized: | |
md = _laplace_sym(m, graph_sum) | |
else: | |
md = _laplace(m, graph_sum) | |
if form == "function": | |
return md, diag.astype(dtype, copy=False) | |
elif form == "lo": | |
m = _linearoperator(md, shape=graph.shape, dtype=dtype) | |
return m, diag.astype(dtype, copy=False) | |
else: | |
raise ValueError(f"Invalid form: {form!r}") | |
def _laplacian_dense(graph, normed, axis, copy, form, dtype, symmetrized): | |
if form != "array": | |
raise ValueError(f'{form!r} must be "array"') | |
if dtype is None: | |
dtype = graph.dtype | |
if copy: | |
m = np.array(graph) | |
else: | |
m = np.asarray(graph) | |
if dtype is None: | |
dtype = m.dtype | |
if symmetrized: | |
m += m.T.conj() | |
np.fill_diagonal(m, 0) | |
w = m.sum(axis=axis) | |
if normed: | |
isolated_node_mask = (w == 0) | |
w = np.where(isolated_node_mask, 1, np.sqrt(w)) | |
m /= w | |
m /= w[:, np.newaxis] | |
m *= -1 | |
_setdiag_dense(m, 1 - isolated_node_mask) | |
else: | |
m *= -1 | |
_setdiag_dense(m, w) | |
return m.astype(dtype, copy=False), w.astype(dtype, copy=False) | |