peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/sparse
/csgraph
/_validation.py
import numpy as np | |
from scipy.sparse import csr_matrix, issparse | |
from scipy.sparse._sputils import convert_pydata_sparse_to_scipy | |
from scipy.sparse.csgraph._tools import ( | |
csgraph_to_dense, csgraph_from_dense, | |
csgraph_masked_from_dense, csgraph_from_masked | |
) | |
DTYPE = np.float64 | |
def validate_graph(csgraph, directed, dtype=DTYPE, | |
csr_output=True, dense_output=True, | |
copy_if_dense=False, copy_if_sparse=False, | |
null_value_in=0, null_value_out=np.inf, | |
infinity_null=True, nan_null=True): | |
"""Routine for validation and conversion of csgraph inputs""" | |
if not (csr_output or dense_output): | |
raise ValueError("Internal: dense or csr output must be true") | |
csgraph = convert_pydata_sparse_to_scipy(csgraph) | |
# if undirected and csc storage, then transposing in-place | |
# is quicker than later converting to csr. | |
if (not directed) and issparse(csgraph) and csgraph.format == "csc": | |
csgraph = csgraph.T | |
if issparse(csgraph): | |
if csr_output: | |
csgraph = csr_matrix(csgraph, dtype=DTYPE, copy=copy_if_sparse) | |
else: | |
csgraph = csgraph_to_dense(csgraph, null_value=null_value_out) | |
elif np.ma.isMaskedArray(csgraph): | |
if dense_output: | |
mask = csgraph.mask | |
csgraph = np.array(csgraph.data, dtype=DTYPE, copy=copy_if_dense) | |
csgraph[mask] = null_value_out | |
else: | |
csgraph = csgraph_from_masked(csgraph) | |
else: | |
if dense_output: | |
csgraph = csgraph_masked_from_dense(csgraph, | |
copy=copy_if_dense, | |
null_value=null_value_in, | |
nan_null=nan_null, | |
infinity_null=infinity_null) | |
mask = csgraph.mask | |
csgraph = np.asarray(csgraph.data, dtype=DTYPE) | |
csgraph[mask] = null_value_out | |
else: | |
csgraph = csgraph_from_dense(csgraph, null_value=null_value_in, | |
infinity_null=infinity_null, | |
nan_null=nan_null) | |
if csgraph.ndim != 2: | |
raise ValueError("compressed-sparse graph must be 2-D") | |
if csgraph.shape[0] != csgraph.shape[1]: | |
raise ValueError("compressed-sparse graph must be shape (N, N)") | |
return csgraph | |