peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/sparse
/linalg
/_interface.py
"""Abstract linear algebra library. | |
This module defines a class hierarchy that implements a kind of "lazy" | |
matrix representation, called the ``LinearOperator``. It can be used to do | |
linear algebra with extremely large sparse or structured matrices, without | |
representing those explicitly in memory. Such matrices can be added, | |
multiplied, transposed, etc. | |
As a motivating example, suppose you want have a matrix where almost all of | |
the elements have the value one. The standard sparse matrix representation | |
skips the storage of zeros, but not ones. By contrast, a LinearOperator is | |
able to represent such matrices efficiently. First, we need a compact way to | |
represent an all-ones matrix:: | |
>>> import numpy as np | |
>>> from scipy.sparse.linalg._interface import LinearOperator | |
>>> class Ones(LinearOperator): | |
... def __init__(self, shape): | |
... super().__init__(dtype=None, shape=shape) | |
... def _matvec(self, x): | |
... return np.repeat(x.sum(), self.shape[0]) | |
Instances of this class emulate ``np.ones(shape)``, but using a constant | |
amount of storage, independent of ``shape``. The ``_matvec`` method specifies | |
how this linear operator multiplies with (operates on) a vector. We can now | |
add this operator to a sparse matrix that stores only offsets from one:: | |
>>> from scipy.sparse.linalg._interface import aslinearoperator | |
>>> from scipy.sparse import csr_matrix | |
>>> offsets = csr_matrix([[1, 0, 2], [0, -1, 0], [0, 0, 3]]) | |
>>> A = aslinearoperator(offsets) + Ones(offsets.shape) | |
>>> A.dot([1, 2, 3]) | |
array([13, 4, 15]) | |
The result is the same as that given by its dense, explicitly-stored | |
counterpart:: | |
>>> (np.ones(A.shape, A.dtype) + offsets.toarray()).dot([1, 2, 3]) | |
array([13, 4, 15]) | |
Several algorithms in the ``scipy.sparse`` library are able to operate on | |
``LinearOperator`` instances. | |
""" | |
import warnings | |
import numpy as np | |
from scipy.sparse import issparse | |
from scipy.sparse._sputils import isshape, isintlike, asmatrix, is_pydata_spmatrix | |
__all__ = ['LinearOperator', 'aslinearoperator'] | |
class LinearOperator: | |
"""Common interface for performing matrix vector products | |
Many iterative methods (e.g. cg, gmres) do not need to know the | |
individual entries of a matrix to solve a linear system A*x=b. | |
Such solvers only require the computation of matrix vector | |
products, A*v where v is a dense vector. This class serves as | |
an abstract interface between iterative solvers and matrix-like | |
objects. | |
To construct a concrete LinearOperator, either pass appropriate | |
callables to the constructor of this class, or subclass it. | |
A subclass must implement either one of the methods ``_matvec`` | |
and ``_matmat``, and the attributes/properties ``shape`` (pair of | |
integers) and ``dtype`` (may be None). It may call the ``__init__`` | |
on this class to have these attributes validated. Implementing | |
``_matvec`` automatically implements ``_matmat`` (using a naive | |
algorithm) and vice-versa. | |
Optionally, a subclass may implement ``_rmatvec`` or ``_adjoint`` | |
to implement the Hermitian adjoint (conjugate transpose). As with | |
``_matvec`` and ``_matmat``, implementing either ``_rmatvec`` or | |
``_adjoint`` implements the other automatically. Implementing | |
``_adjoint`` is preferable; ``_rmatvec`` is mostly there for | |
backwards compatibility. | |
Parameters | |
---------- | |
shape : tuple | |
Matrix dimensions (M, N). | |
matvec : callable f(v) | |
Returns returns A * v. | |
rmatvec : callable f(v) | |
Returns A^H * v, where A^H is the conjugate transpose of A. | |
matmat : callable f(V) | |
Returns A * V, where V is a dense matrix with dimensions (N, K). | |
dtype : dtype | |
Data type of the matrix. | |
rmatmat : callable f(V) | |
Returns A^H * V, where V is a dense matrix with dimensions (M, K). | |
Attributes | |
---------- | |
args : tuple | |
For linear operators describing products etc. of other linear | |
operators, the operands of the binary operation. | |
ndim : int | |
Number of dimensions (this is always 2) | |
See Also | |
-------- | |
aslinearoperator : Construct LinearOperators | |
Notes | |
----- | |
The user-defined matvec() function must properly handle the case | |
where v has shape (N,) as well as the (N,1) case. The shape of | |
the return type is handled internally by LinearOperator. | |
LinearOperator instances can also be multiplied, added with each | |
other and exponentiated, all lazily: the result of these operations | |
is always a new, composite LinearOperator, that defers linear | |
operations to the original operators and combines the results. | |
More details regarding how to subclass a LinearOperator and several | |
examples of concrete LinearOperator instances can be found in the | |
external project `PyLops <https://pylops.readthedocs.io>`_. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.sparse.linalg import LinearOperator | |
>>> def mv(v): | |
... return np.array([2*v[0], 3*v[1]]) | |
... | |
>>> A = LinearOperator((2,2), matvec=mv) | |
>>> A | |
<2x2 _CustomLinearOperator with dtype=float64> | |
>>> A.matvec(np.ones(2)) | |
array([ 2., 3.]) | |
>>> A * np.ones(2) | |
array([ 2., 3.]) | |
""" | |
ndim = 2 | |
# Necessary for right matmul with numpy arrays. | |
__array_ufunc__ = None | |
def __new__(cls, *args, **kwargs): | |
if cls is LinearOperator: | |
# Operate as _CustomLinearOperator factory. | |
return super().__new__(_CustomLinearOperator) | |
else: | |
obj = super().__new__(cls) | |
if (type(obj)._matvec == LinearOperator._matvec | |
and type(obj)._matmat == LinearOperator._matmat): | |
warnings.warn("LinearOperator subclass should implement" | |
" at least one of _matvec and _matmat.", | |
category=RuntimeWarning, stacklevel=2) | |
return obj | |
def __init__(self, dtype, shape): | |
"""Initialize this LinearOperator. | |
To be called by subclasses. ``dtype`` may be None; ``shape`` should | |
be convertible to a length-2 tuple. | |
""" | |
if dtype is not None: | |
dtype = np.dtype(dtype) | |
shape = tuple(shape) | |
if not isshape(shape): | |
raise ValueError(f"invalid shape {shape!r} (must be 2-d)") | |
self.dtype = dtype | |
self.shape = shape | |
def _init_dtype(self): | |
"""Called from subclasses at the end of the __init__ routine. | |
""" | |
if self.dtype is None: | |
v = np.zeros(self.shape[-1]) | |
self.dtype = np.asarray(self.matvec(v)).dtype | |
def _matmat(self, X): | |
"""Default matrix-matrix multiplication handler. | |
Falls back on the user-defined _matvec method, so defining that will | |
define matrix multiplication (though in a very suboptimal way). | |
""" | |
return np.hstack([self.matvec(col.reshape(-1,1)) for col in X.T]) | |
def _matvec(self, x): | |
"""Default matrix-vector multiplication handler. | |
If self is a linear operator of shape (M, N), then this method will | |
be called on a shape (N,) or (N, 1) ndarray, and should return a | |
shape (M,) or (M, 1) ndarray. | |
This default implementation falls back on _matmat, so defining that | |
will define matrix-vector multiplication as well. | |
""" | |
return self.matmat(x.reshape(-1, 1)) | |
def matvec(self, x): | |
"""Matrix-vector multiplication. | |
Performs the operation y=A*x where A is an MxN linear | |
operator and x is a column vector or 1-d array. | |
Parameters | |
---------- | |
x : {matrix, ndarray} | |
An array with shape (N,) or (N,1). | |
Returns | |
------- | |
y : {matrix, ndarray} | |
A matrix or ndarray with shape (M,) or (M,1) depending | |
on the type and shape of the x argument. | |
Notes | |
----- | |
This matvec wraps the user-specified matvec routine or overridden | |
_matvec method to ensure that y has the correct shape and type. | |
""" | |
x = np.asanyarray(x) | |
M,N = self.shape | |
if x.shape != (N,) and x.shape != (N,1): | |
raise ValueError('dimension mismatch') | |
y = self._matvec(x) | |
if isinstance(x, np.matrix): | |
y = asmatrix(y) | |
else: | |
y = np.asarray(y) | |
if x.ndim == 1: | |
y = y.reshape(M) | |
elif x.ndim == 2: | |
y = y.reshape(M,1) | |
else: | |
raise ValueError('invalid shape returned by user-defined matvec()') | |
return y | |
def rmatvec(self, x): | |
"""Adjoint matrix-vector multiplication. | |
Performs the operation y = A^H * x where A is an MxN linear | |
operator and x is a column vector or 1-d array. | |
Parameters | |
---------- | |
x : {matrix, ndarray} | |
An array with shape (M,) or (M,1). | |
Returns | |
------- | |
y : {matrix, ndarray} | |
A matrix or ndarray with shape (N,) or (N,1) depending | |
on the type and shape of the x argument. | |
Notes | |
----- | |
This rmatvec wraps the user-specified rmatvec routine or overridden | |
_rmatvec method to ensure that y has the correct shape and type. | |
""" | |
x = np.asanyarray(x) | |
M,N = self.shape | |
if x.shape != (M,) and x.shape != (M,1): | |
raise ValueError('dimension mismatch') | |
y = self._rmatvec(x) | |
if isinstance(x, np.matrix): | |
y = asmatrix(y) | |
else: | |
y = np.asarray(y) | |
if x.ndim == 1: | |
y = y.reshape(N) | |
elif x.ndim == 2: | |
y = y.reshape(N,1) | |
else: | |
raise ValueError('invalid shape returned by user-defined rmatvec()') | |
return y | |
def _rmatvec(self, x): | |
"""Default implementation of _rmatvec; defers to adjoint.""" | |
if type(self)._adjoint == LinearOperator._adjoint: | |
# _adjoint not overridden, prevent infinite recursion | |
raise NotImplementedError | |
else: | |
return self.H.matvec(x) | |
def matmat(self, X): | |
"""Matrix-matrix multiplication. | |
Performs the operation y=A*X where A is an MxN linear | |
operator and X dense N*K matrix or ndarray. | |
Parameters | |
---------- | |
X : {matrix, ndarray} | |
An array with shape (N,K). | |
Returns | |
------- | |
Y : {matrix, ndarray} | |
A matrix or ndarray with shape (M,K) depending on | |
the type of the X argument. | |
Notes | |
----- | |
This matmat wraps any user-specified matmat routine or overridden | |
_matmat method to ensure that y has the correct type. | |
""" | |
if not (issparse(X) or is_pydata_spmatrix(X)): | |
X = np.asanyarray(X) | |
if X.ndim != 2: | |
raise ValueError(f'expected 2-d ndarray or matrix, not {X.ndim}-d') | |
if X.shape[0] != self.shape[1]: | |
raise ValueError(f'dimension mismatch: {self.shape}, {X.shape}') | |
try: | |
Y = self._matmat(X) | |
except Exception as e: | |
if issparse(X) or is_pydata_spmatrix(X): | |
raise TypeError( | |
"Unable to multiply a LinearOperator with a sparse matrix." | |
" Wrap the matrix in aslinearoperator first." | |
) from e | |
raise | |
if isinstance(Y, np.matrix): | |
Y = asmatrix(Y) | |
return Y | |
def rmatmat(self, X): | |
"""Adjoint matrix-matrix multiplication. | |
Performs the operation y = A^H * x where A is an MxN linear | |
operator and x is a column vector or 1-d array, or 2-d array. | |
The default implementation defers to the adjoint. | |
Parameters | |
---------- | |
X : {matrix, ndarray} | |
A matrix or 2D array. | |
Returns | |
------- | |
Y : {matrix, ndarray} | |
A matrix or 2D array depending on the type of the input. | |
Notes | |
----- | |
This rmatmat wraps the user-specified rmatmat routine. | |
""" | |
if not (issparse(X) or is_pydata_spmatrix(X)): | |
X = np.asanyarray(X) | |
if X.ndim != 2: | |
raise ValueError('expected 2-d ndarray or matrix, not %d-d' | |
% X.ndim) | |
if X.shape[0] != self.shape[0]: | |
raise ValueError(f'dimension mismatch: {self.shape}, {X.shape}') | |
try: | |
Y = self._rmatmat(X) | |
except Exception as e: | |
if issparse(X) or is_pydata_spmatrix(X): | |
raise TypeError( | |
"Unable to multiply a LinearOperator with a sparse matrix." | |
" Wrap the matrix in aslinearoperator() first." | |
) from e | |
raise | |
if isinstance(Y, np.matrix): | |
Y = asmatrix(Y) | |
return Y | |
def _rmatmat(self, X): | |
"""Default implementation of _rmatmat defers to rmatvec or adjoint.""" | |
if type(self)._adjoint == LinearOperator._adjoint: | |
return np.hstack([self.rmatvec(col.reshape(-1, 1)) for col in X.T]) | |
else: | |
return self.H.matmat(X) | |
def __call__(self, x): | |
return self*x | |
def __mul__(self, x): | |
return self.dot(x) | |
def __truediv__(self, other): | |
if not np.isscalar(other): | |
raise ValueError("Can only divide a linear operator by a scalar.") | |
return _ScaledLinearOperator(self, 1.0/other) | |
def dot(self, x): | |
"""Matrix-matrix or matrix-vector multiplication. | |
Parameters | |
---------- | |
x : array_like | |
1-d or 2-d array, representing a vector or matrix. | |
Returns | |
------- | |
Ax : array | |
1-d or 2-d array (depending on the shape of x) that represents | |
the result of applying this linear operator on x. | |
""" | |
if isinstance(x, LinearOperator): | |
return _ProductLinearOperator(self, x) | |
elif np.isscalar(x): | |
return _ScaledLinearOperator(self, x) | |
else: | |
if not issparse(x) and not is_pydata_spmatrix(x): | |
# Sparse matrices shouldn't be converted to numpy arrays. | |
x = np.asarray(x) | |
if x.ndim == 1 or x.ndim == 2 and x.shape[1] == 1: | |
return self.matvec(x) | |
elif x.ndim == 2: | |
return self.matmat(x) | |
else: | |
raise ValueError('expected 1-d or 2-d array or matrix, got %r' | |
% x) | |
def __matmul__(self, other): | |
if np.isscalar(other): | |
raise ValueError("Scalar operands are not allowed, " | |
"use '*' instead") | |
return self.__mul__(other) | |
def __rmatmul__(self, other): | |
if np.isscalar(other): | |
raise ValueError("Scalar operands are not allowed, " | |
"use '*' instead") | |
return self.__rmul__(other) | |
def __rmul__(self, x): | |
if np.isscalar(x): | |
return _ScaledLinearOperator(self, x) | |
else: | |
return self._rdot(x) | |
def _rdot(self, x): | |
"""Matrix-matrix or matrix-vector multiplication from the right. | |
Parameters | |
---------- | |
x : array_like | |
1-d or 2-d array, representing a vector or matrix. | |
Returns | |
------- | |
xA : array | |
1-d or 2-d array (depending on the shape of x) that represents | |
the result of applying this linear operator on x from the right. | |
Notes | |
----- | |
This is copied from dot to implement right multiplication. | |
""" | |
if isinstance(x, LinearOperator): | |
return _ProductLinearOperator(x, self) | |
elif np.isscalar(x): | |
return _ScaledLinearOperator(self, x) | |
else: | |
if not issparse(x) and not is_pydata_spmatrix(x): | |
# Sparse matrices shouldn't be converted to numpy arrays. | |
x = np.asarray(x) | |
# We use transpose instead of rmatvec/rmatmat to avoid | |
# unnecessary complex conjugation if possible. | |
if x.ndim == 1 or x.ndim == 2 and x.shape[0] == 1: | |
return self.T.matvec(x.T).T | |
elif x.ndim == 2: | |
return self.T.matmat(x.T).T | |
else: | |
raise ValueError('expected 1-d or 2-d array or matrix, got %r' | |
% x) | |
def __pow__(self, p): | |
if np.isscalar(p): | |
return _PowerLinearOperator(self, p) | |
else: | |
return NotImplemented | |
def __add__(self, x): | |
if isinstance(x, LinearOperator): | |
return _SumLinearOperator(self, x) | |
else: | |
return NotImplemented | |
def __neg__(self): | |
return _ScaledLinearOperator(self, -1) | |
def __sub__(self, x): | |
return self.__add__(-x) | |
def __repr__(self): | |
M,N = self.shape | |
if self.dtype is None: | |
dt = 'unspecified dtype' | |
else: | |
dt = 'dtype=' + str(self.dtype) | |
return '<%dx%d %s with %s>' % (M, N, self.__class__.__name__, dt) | |
def adjoint(self): | |
"""Hermitian adjoint. | |
Returns the Hermitian adjoint of self, aka the Hermitian | |
conjugate or Hermitian transpose. For a complex matrix, the | |
Hermitian adjoint is equal to the conjugate transpose. | |
Can be abbreviated self.H instead of self.adjoint(). | |
Returns | |
------- | |
A_H : LinearOperator | |
Hermitian adjoint of self. | |
""" | |
return self._adjoint() | |
H = property(adjoint) | |
def transpose(self): | |
"""Transpose this linear operator. | |
Returns a LinearOperator that represents the transpose of this one. | |
Can be abbreviated self.T instead of self.transpose(). | |
""" | |
return self._transpose() | |
T = property(transpose) | |
def _adjoint(self): | |
"""Default implementation of _adjoint; defers to rmatvec.""" | |
return _AdjointLinearOperator(self) | |
def _transpose(self): | |
""" Default implementation of _transpose; defers to rmatvec + conj""" | |
return _TransposedLinearOperator(self) | |
class _CustomLinearOperator(LinearOperator): | |
"""Linear operator defined in terms of user-specified operations.""" | |
def __init__(self, shape, matvec, rmatvec=None, matmat=None, | |
dtype=None, rmatmat=None): | |
super().__init__(dtype, shape) | |
self.args = () | |
self.__matvec_impl = matvec | |
self.__rmatvec_impl = rmatvec | |
self.__rmatmat_impl = rmatmat | |
self.__matmat_impl = matmat | |
self._init_dtype() | |
def _matmat(self, X): | |
if self.__matmat_impl is not None: | |
return self.__matmat_impl(X) | |
else: | |
return super()._matmat(X) | |
def _matvec(self, x): | |
return self.__matvec_impl(x) | |
def _rmatvec(self, x): | |
func = self.__rmatvec_impl | |
if func is None: | |
raise NotImplementedError("rmatvec is not defined") | |
return self.__rmatvec_impl(x) | |
def _rmatmat(self, X): | |
if self.__rmatmat_impl is not None: | |
return self.__rmatmat_impl(X) | |
else: | |
return super()._rmatmat(X) | |
def _adjoint(self): | |
return _CustomLinearOperator(shape=(self.shape[1], self.shape[0]), | |
matvec=self.__rmatvec_impl, | |
rmatvec=self.__matvec_impl, | |
matmat=self.__rmatmat_impl, | |
rmatmat=self.__matmat_impl, | |
dtype=self.dtype) | |
class _AdjointLinearOperator(LinearOperator): | |
"""Adjoint of arbitrary Linear Operator""" | |
def __init__(self, A): | |
shape = (A.shape[1], A.shape[0]) | |
super().__init__(dtype=A.dtype, shape=shape) | |
self.A = A | |
self.args = (A,) | |
def _matvec(self, x): | |
return self.A._rmatvec(x) | |
def _rmatvec(self, x): | |
return self.A._matvec(x) | |
def _matmat(self, x): | |
return self.A._rmatmat(x) | |
def _rmatmat(self, x): | |
return self.A._matmat(x) | |
class _TransposedLinearOperator(LinearOperator): | |
"""Transposition of arbitrary Linear Operator""" | |
def __init__(self, A): | |
shape = (A.shape[1], A.shape[0]) | |
super().__init__(dtype=A.dtype, shape=shape) | |
self.A = A | |
self.args = (A,) | |
def _matvec(self, x): | |
# NB. np.conj works also on sparse matrices | |
return np.conj(self.A._rmatvec(np.conj(x))) | |
def _rmatvec(self, x): | |
return np.conj(self.A._matvec(np.conj(x))) | |
def _matmat(self, x): | |
# NB. np.conj works also on sparse matrices | |
return np.conj(self.A._rmatmat(np.conj(x))) | |
def _rmatmat(self, x): | |
return np.conj(self.A._matmat(np.conj(x))) | |
def _get_dtype(operators, dtypes=None): | |
if dtypes is None: | |
dtypes = [] | |
for obj in operators: | |
if obj is not None and hasattr(obj, 'dtype'): | |
dtypes.append(obj.dtype) | |
return np.result_type(*dtypes) | |
class _SumLinearOperator(LinearOperator): | |
def __init__(self, A, B): | |
if not isinstance(A, LinearOperator) or \ | |
not isinstance(B, LinearOperator): | |
raise ValueError('both operands have to be a LinearOperator') | |
if A.shape != B.shape: | |
raise ValueError(f'cannot add {A} and {B}: shape mismatch') | |
self.args = (A, B) | |
super().__init__(_get_dtype([A, B]), A.shape) | |
def _matvec(self, x): | |
return self.args[0].matvec(x) + self.args[1].matvec(x) | |
def _rmatvec(self, x): | |
return self.args[0].rmatvec(x) + self.args[1].rmatvec(x) | |
def _rmatmat(self, x): | |
return self.args[0].rmatmat(x) + self.args[1].rmatmat(x) | |
def _matmat(self, x): | |
return self.args[0].matmat(x) + self.args[1].matmat(x) | |
def _adjoint(self): | |
A, B = self.args | |
return A.H + B.H | |
class _ProductLinearOperator(LinearOperator): | |
def __init__(self, A, B): | |
if not isinstance(A, LinearOperator) or \ | |
not isinstance(B, LinearOperator): | |
raise ValueError('both operands have to be a LinearOperator') | |
if A.shape[1] != B.shape[0]: | |
raise ValueError(f'cannot multiply {A} and {B}: shape mismatch') | |
super().__init__(_get_dtype([A, B]), | |
(A.shape[0], B.shape[1])) | |
self.args = (A, B) | |
def _matvec(self, x): | |
return self.args[0].matvec(self.args[1].matvec(x)) | |
def _rmatvec(self, x): | |
return self.args[1].rmatvec(self.args[0].rmatvec(x)) | |
def _rmatmat(self, x): | |
return self.args[1].rmatmat(self.args[0].rmatmat(x)) | |
def _matmat(self, x): | |
return self.args[0].matmat(self.args[1].matmat(x)) | |
def _adjoint(self): | |
A, B = self.args | |
return B.H * A.H | |
class _ScaledLinearOperator(LinearOperator): | |
def __init__(self, A, alpha): | |
if not isinstance(A, LinearOperator): | |
raise ValueError('LinearOperator expected as A') | |
if not np.isscalar(alpha): | |
raise ValueError('scalar expected as alpha') | |
if isinstance(A, _ScaledLinearOperator): | |
A, alpha_original = A.args | |
# Avoid in-place multiplication so that we don't accidentally mutate | |
# the original prefactor. | |
alpha = alpha * alpha_original | |
dtype = _get_dtype([A], [type(alpha)]) | |
super().__init__(dtype, A.shape) | |
self.args = (A, alpha) | |
def _matvec(self, x): | |
return self.args[1] * self.args[0].matvec(x) | |
def _rmatvec(self, x): | |
return np.conj(self.args[1]) * self.args[0].rmatvec(x) | |
def _rmatmat(self, x): | |
return np.conj(self.args[1]) * self.args[0].rmatmat(x) | |
def _matmat(self, x): | |
return self.args[1] * self.args[0].matmat(x) | |
def _adjoint(self): | |
A, alpha = self.args | |
return A.H * np.conj(alpha) | |
class _PowerLinearOperator(LinearOperator): | |
def __init__(self, A, p): | |
if not isinstance(A, LinearOperator): | |
raise ValueError('LinearOperator expected as A') | |
if A.shape[0] != A.shape[1]: | |
raise ValueError('square LinearOperator expected, got %r' % A) | |
if not isintlike(p) or p < 0: | |
raise ValueError('non-negative integer expected as p') | |
super().__init__(_get_dtype([A]), A.shape) | |
self.args = (A, p) | |
def _power(self, fun, x): | |
res = np.array(x, copy=True) | |
for i in range(self.args[1]): | |
res = fun(res) | |
return res | |
def _matvec(self, x): | |
return self._power(self.args[0].matvec, x) | |
def _rmatvec(self, x): | |
return self._power(self.args[0].rmatvec, x) | |
def _rmatmat(self, x): | |
return self._power(self.args[0].rmatmat, x) | |
def _matmat(self, x): | |
return self._power(self.args[0].matmat, x) | |
def _adjoint(self): | |
A, p = self.args | |
return A.H ** p | |
class MatrixLinearOperator(LinearOperator): | |
def __init__(self, A): | |
super().__init__(A.dtype, A.shape) | |
self.A = A | |
self.__adj = None | |
self.args = (A,) | |
def _matmat(self, X): | |
return self.A.dot(X) | |
def _adjoint(self): | |
if self.__adj is None: | |
self.__adj = _AdjointMatrixOperator(self) | |
return self.__adj | |
class _AdjointMatrixOperator(MatrixLinearOperator): | |
def __init__(self, adjoint): | |
self.A = adjoint.A.T.conj() | |
self.__adjoint = adjoint | |
self.args = (adjoint,) | |
self.shape = adjoint.shape[1], adjoint.shape[0] | |
def dtype(self): | |
return self.__adjoint.dtype | |
def _adjoint(self): | |
return self.__adjoint | |
class IdentityOperator(LinearOperator): | |
def __init__(self, shape, dtype=None): | |
super().__init__(dtype, shape) | |
def _matvec(self, x): | |
return x | |
def _rmatvec(self, x): | |
return x | |
def _rmatmat(self, x): | |
return x | |
def _matmat(self, x): | |
return x | |
def _adjoint(self): | |
return self | |
def aslinearoperator(A): | |
"""Return A as a LinearOperator. | |
'A' may be any of the following types: | |
- ndarray | |
- matrix | |
- sparse matrix (e.g. csr_matrix, lil_matrix, etc.) | |
- LinearOperator | |
- An object with .shape and .matvec attributes | |
See the LinearOperator documentation for additional information. | |
Notes | |
----- | |
If 'A' has no .dtype attribute, the data type is determined by calling | |
:func:`LinearOperator.matvec()` - set the .dtype attribute to prevent this | |
call upon the linear operator creation. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.sparse.linalg import aslinearoperator | |
>>> M = np.array([[1,2,3],[4,5,6]], dtype=np.int32) | |
>>> aslinearoperator(M) | |
<2x3 MatrixLinearOperator with dtype=int32> | |
""" | |
if isinstance(A, LinearOperator): | |
return A | |
elif isinstance(A, np.ndarray) or isinstance(A, np.matrix): | |
if A.ndim > 2: | |
raise ValueError('array must have ndim <= 2') | |
A = np.atleast_2d(np.asarray(A)) | |
return MatrixLinearOperator(A) | |
elif issparse(A) or is_pydata_spmatrix(A): | |
return MatrixLinearOperator(A) | |
else: | |
if hasattr(A, 'shape') and hasattr(A, 'matvec'): | |
rmatvec = None | |
rmatmat = None | |
dtype = None | |
if hasattr(A, 'rmatvec'): | |
rmatvec = A.rmatvec | |
if hasattr(A, 'rmatmat'): | |
rmatmat = A.rmatmat | |
if hasattr(A, 'dtype'): | |
dtype = A.dtype | |
return LinearOperator(A.shape, A.matvec, rmatvec=rmatvec, | |
rmatmat=rmatmat, dtype=dtype) | |
else: | |
raise TypeError('type not understood') | |