peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/sparse
/linalg
/_svdp.py
""" | |
Python wrapper for PROPACK | |
-------------------------- | |
PROPACK is a collection of Fortran routines for iterative computation | |
of partial SVDs of large matrices or linear operators. | |
Based on BSD licensed pypropack project: | |
http://github.com/jakevdp/pypropack | |
Author: Jake Vanderplas <[email protected]> | |
PROPACK source is BSD licensed, and available at | |
http://soi.stanford.edu/~rmunk/PROPACK/ | |
""" | |
__all__ = ['_svdp'] | |
import numpy as np | |
from scipy._lib._util import check_random_state | |
from scipy.sparse.linalg import aslinearoperator | |
from scipy.linalg import LinAlgError | |
from ._propack import _spropack # type: ignore[attr-defined] | |
from ._propack import _dpropack # type: ignore[attr-defined] | |
from ._propack import _cpropack # type: ignore[attr-defined] | |
from ._propack import _zpropack # type: ignore[attr-defined] | |
_lansvd_dict = { | |
'f': _spropack.slansvd, | |
'd': _dpropack.dlansvd, | |
'F': _cpropack.clansvd, | |
'D': _zpropack.zlansvd, | |
} | |
_lansvd_irl_dict = { | |
'f': _spropack.slansvd_irl, | |
'd': _dpropack.dlansvd_irl, | |
'F': _cpropack.clansvd_irl, | |
'D': _zpropack.zlansvd_irl, | |
} | |
_which_converter = { | |
'LM': 'L', | |
'SM': 'S', | |
} | |
class _AProd: | |
""" | |
Wrapper class for linear operator | |
The call signature of the __call__ method matches the callback of | |
the PROPACK routines. | |
""" | |
def __init__(self, A): | |
try: | |
self.A = aslinearoperator(A) | |
except TypeError: | |
self.A = aslinearoperator(np.asarray(A)) | |
def __call__(self, transa, m, n, x, y, sparm, iparm): | |
if transa == 'n': | |
y[:] = self.A.matvec(x) | |
else: | |
y[:] = self.A.rmatvec(x) | |
def shape(self): | |
return self.A.shape | |
def dtype(self): | |
try: | |
return self.A.dtype | |
except AttributeError: | |
return self.A.matvec(np.zeros(self.A.shape[1])).dtype | |
def _svdp(A, k, which='LM', irl_mode=True, kmax=None, | |
compute_u=True, compute_v=True, v0=None, full_output=False, tol=0, | |
delta=None, eta=None, anorm=0, cgs=False, elr=True, | |
min_relgap=0.002, shifts=None, maxiter=None, random_state=None): | |
""" | |
Compute the singular value decomposition of a linear operator using PROPACK | |
Parameters | |
---------- | |
A : array_like, sparse matrix, or LinearOperator | |
Operator for which SVD will be computed. If `A` is a LinearOperator | |
object, it must define both ``matvec`` and ``rmatvec`` methods. | |
k : int | |
Number of singular values/vectors to compute | |
which : {"LM", "SM"} | |
Which singular triplets to compute: | |
- 'LM': compute triplets corresponding to the `k` largest singular | |
values | |
- 'SM': compute triplets corresponding to the `k` smallest singular | |
values | |
`which='SM'` requires `irl_mode=True`. Computes largest singular | |
values by default. | |
irl_mode : bool, optional | |
If `True`, then compute SVD using IRL (implicitly restarted Lanczos) | |
mode. Default is `True`. | |
kmax : int, optional | |
Maximal number of iterations / maximal dimension of the Krylov | |
subspace. Default is ``10 * k``. | |
compute_u : bool, optional | |
If `True` (default) then compute left singular vectors, `u`. | |
compute_v : bool, optional | |
If `True` (default) then compute right singular vectors, `v`. | |
tol : float, optional | |
The desired relative accuracy for computed singular values. | |
If not specified, it will be set based on machine precision. | |
v0 : array_like, optional | |
Starting vector for iterations: must be of length ``A.shape[0]``. | |
If not specified, PROPACK will generate a starting vector. | |
full_output : bool, optional | |
If `True`, then return sigma_bound. Default is `False`. | |
delta : float, optional | |
Level of orthogonality to maintain between Lanczos vectors. | |
Default is set based on machine precision. | |
eta : float, optional | |
Orthogonality cutoff. During reorthogonalization, vectors with | |
component larger than `eta` along the Lanczos vector will be purged. | |
Default is set based on machine precision. | |
anorm : float, optional | |
Estimate of ``||A||``. Default is `0`. | |
cgs : bool, optional | |
If `True`, reorthogonalization is done using classical Gram-Schmidt. | |
If `False` (default), it is done using modified Gram-Schmidt. | |
elr : bool, optional | |
If `True` (default), then extended local orthogonality is enforced | |
when obtaining singular vectors. | |
min_relgap : float, optional | |
The smallest relative gap allowed between any shift in IRL mode. | |
Default is `0.001`. Accessed only if ``irl_mode=True``. | |
shifts : int, optional | |
Number of shifts per restart in IRL mode. Default is determined | |
to satisfy ``k <= min(kmax-shifts, m, n)``. Must be | |
>= 0, but choosing 0 might lead to performance degradation. | |
Accessed only if ``irl_mode=True``. | |
maxiter : int, optional | |
Maximum number of restarts in IRL mode. Default is `1000`. | |
Accessed only if ``irl_mode=True``. | |
random_state : {None, int, `numpy.random.Generator`, | |
`numpy.random.RandomState`}, optional | |
Pseudorandom number generator state used to generate resamples. | |
If `random_state` is ``None`` (or `np.random`), the | |
`numpy.random.RandomState` singleton is used. | |
If `random_state` is an int, a new ``RandomState`` instance is used, | |
seeded with `random_state`. | |
If `random_state` is already a ``Generator`` or ``RandomState`` | |
instance then that instance is used. | |
Returns | |
------- | |
u : ndarray | |
The `k` largest (``which="LM"``) or smallest (``which="SM"``) left | |
singular vectors, ``shape == (A.shape[0], 3)``, returned only if | |
``compute_u=True``. | |
sigma : ndarray | |
The top `k` singular values, ``shape == (k,)`` | |
vt : ndarray | |
The `k` largest (``which="LM"``) or smallest (``which="SM"``) right | |
singular vectors, ``shape == (3, A.shape[1])``, returned only if | |
``compute_v=True``. | |
sigma_bound : ndarray | |
the error bounds on the singular values sigma, returned only if | |
``full_output=True``. | |
""" | |
random_state = check_random_state(random_state) | |
which = which.upper() | |
if which not in {'LM', 'SM'}: | |
raise ValueError("`which` must be either 'LM' or 'SM'") | |
if not irl_mode and which == 'SM': | |
raise ValueError("`which`='SM' requires irl_mode=True") | |
aprod = _AProd(A) | |
typ = aprod.dtype.char | |
try: | |
lansvd_irl = _lansvd_irl_dict[typ] | |
lansvd = _lansvd_dict[typ] | |
except KeyError: | |
# work with non-supported types using native system precision | |
if np.iscomplexobj(np.empty(0, dtype=typ)): | |
typ = np.dtype(complex).char | |
else: | |
typ = np.dtype(float).char | |
lansvd_irl = _lansvd_irl_dict[typ] | |
lansvd = _lansvd_dict[typ] | |
m, n = aprod.shape | |
if (k < 1) or (k > min(m, n)): | |
raise ValueError("k must be positive and not greater than m or n") | |
if kmax is None: | |
kmax = 10*k | |
if maxiter is None: | |
maxiter = 1000 | |
# guard against unnecessarily large kmax | |
kmax = min(m + 1, n + 1, kmax) | |
if kmax < k: | |
raise ValueError( | |
"kmax must be greater than or equal to k, " | |
f"but kmax ({kmax}) < k ({k})") | |
# convert python args to fortran args | |
jobu = 'y' if compute_u else 'n' | |
jobv = 'y' if compute_v else 'n' | |
# these will be the output arrays | |
u = np.zeros((m, kmax + 1), order='F', dtype=typ) | |
v = np.zeros((n, kmax), order='F', dtype=typ) | |
# Specify the starting vector. if v0 is all zero, PROPACK will generate | |
# a random starting vector: the random seed cannot be controlled in that | |
# case, so we'll instead use numpy to generate a random vector | |
if v0 is None: | |
u[:, 0] = random_state.uniform(size=m) | |
if np.iscomplexobj(np.empty(0, dtype=typ)): # complex type | |
u[:, 0] += 1j * random_state.uniform(size=m) | |
else: | |
try: | |
u[:, 0] = v0 | |
except ValueError: | |
raise ValueError(f"v0 must be of length {m}") | |
# process options for the fit | |
if delta is None: | |
delta = np.sqrt(np.finfo(typ).eps) | |
if eta is None: | |
eta = np.finfo(typ).eps ** 0.75 | |
if irl_mode: | |
doption = np.array((delta, eta, anorm, min_relgap), dtype=typ.lower()) | |
# validate or find default shifts | |
if shifts is None: | |
shifts = kmax - k | |
if k > min(kmax - shifts, m, n): | |
raise ValueError('shifts must satisfy ' | |
'k <= min(kmax-shifts, m, n)!') | |
elif shifts < 0: | |
raise ValueError('shifts must be >= 0!') | |
else: | |
doption = np.array((delta, eta, anorm), dtype=typ.lower()) | |
ioption = np.array((int(bool(cgs)), int(bool(elr))), dtype='i') | |
# If computing `u` or `v` (left and right singular vectors, | |
# respectively), `blocksize` controls how large a fraction of the | |
# work is done via fast BLAS level 3 operations. A larger blocksize | |
# may lead to faster computation at the expense of greater memory | |
# consumption. `blocksize` must be ``>= 1``. Choosing blocksize | |
# of 16, but docs don't specify; it's almost surely a | |
# power of 2. | |
blocksize = 16 | |
# Determine lwork & liwork: | |
# the required lengths are specified in the PROPACK documentation | |
if compute_u or compute_v: | |
lwork = m + n + 9*kmax + 5*kmax*kmax + 4 + max( | |
3*kmax*kmax + 4*kmax + 4, | |
blocksize*max(m, n)) | |
liwork = 8*kmax | |
else: | |
lwork = m + n + 9*kmax + 2*kmax*kmax + 4 + max(m + n, 4*kmax + 4) | |
liwork = 2*kmax + 1 | |
work = np.empty(lwork, dtype=typ.lower()) | |
iwork = np.empty(liwork, dtype=np.int32) | |
# dummy arguments: these are passed to aprod, and not used in this wrapper | |
dparm = np.empty(1, dtype=typ.lower()) | |
iparm = np.empty(1, dtype=np.int32) | |
if typ.isupper(): | |
# PROPACK documentation is unclear on the required length of zwork. | |
# Use the same length Julia's wrapper uses | |
# see https://github.com/JuliaSmoothOptimizers/PROPACK.jl/ | |
zwork = np.empty(m + n + 32*m, dtype=typ) | |
works = work, zwork, iwork | |
else: | |
works = work, iwork | |
if irl_mode: | |
u, sigma, bnd, v, info = lansvd_irl(_which_converter[which], jobu, | |
jobv, m, n, shifts, k, maxiter, | |
aprod, u, v, tol, *works, doption, | |
ioption, dparm, iparm) | |
else: | |
u, sigma, bnd, v, info = lansvd(jobu, jobv, m, n, k, aprod, u, v, tol, | |
*works, doption, ioption, dparm, iparm) | |
if info > 0: | |
raise LinAlgError( | |
f"An invariant subspace of dimension {info} was found.") | |
elif info < 0: | |
raise LinAlgError( | |
f"k={k} singular triplets did not converge within " | |
f"kmax={kmax} iterations") | |
# info == 0: The K largest (or smallest) singular triplets were computed | |
# successfully! | |
return u[:, :k], sigma, v[:, :k].conj().T, bnd | |