peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/sparse
/tests
/test_common1d.py
"""Test of 1D aspects of sparse array classes""" | |
import pytest | |
import numpy as np | |
import scipy as sp | |
from scipy.sparse._sputils import supported_dtypes, matrix | |
from scipy._lib._util import ComplexWarning | |
sup_complex = np.testing.suppress_warnings() | |
sup_complex.filter(ComplexWarning) | |
spcreators = [sp.sparse.coo_array, sp.sparse.dok_array] | |
math_dtypes = [np.int64, np.float64, np.complex128] | |
def dat1d(): | |
return np.array([3, 0, 1, 0], 'd') | |
def datsp_math_dtypes(dat1d): | |
dat_dtypes = {dtype: dat1d.astype(dtype) for dtype in math_dtypes} | |
return { | |
sp: [(dtype, dat, sp(dat)) for dtype, dat in dat_dtypes.items()] | |
for sp in spcreators | |
} | |
class TestCommon1D: | |
"""test common functionality shared by 1D sparse formats""" | |
def test_create_empty(self, spcreator): | |
assert np.array_equal(spcreator((3,)).toarray(), np.zeros(3)) | |
assert np.array_equal(spcreator((3,)).nnz, 0) | |
assert np.array_equal(spcreator((3,)).count_nonzero(), 0) | |
def test_invalid_shapes(self, spcreator): | |
with pytest.raises(ValueError, match='elements cannot be negative'): | |
spcreator((-3,)) | |
def test_repr(self, spcreator, dat1d): | |
repr(spcreator(dat1d)) | |
def test_str(self, spcreator, dat1d): | |
str(spcreator(dat1d)) | |
def test_neg(self, spcreator): | |
A = np.array([-1, 0, 17, 0, -5, 0, 1, -4, 0, 0, 0, 0], 'd') | |
assert np.array_equal(-A, (-spcreator(A)).toarray()) | |
def test_reshape_1d_tofrom_row_or_column(self, spcreator): | |
# add a dimension 1d->2d | |
x = spcreator([1, 0, 7, 0, 0, 0, 0, -3, 0, 0, 0, 5]) | |
y = x.reshape(1, 12) | |
desired = [[1, 0, 7, 0, 0, 0, 0, -3, 0, 0, 0, 5]] | |
assert np.array_equal(y.toarray(), desired) | |
# remove a size-1 dimension 2d->1d | |
x = spcreator(desired) | |
y = x.reshape(12) | |
assert np.array_equal(y.toarray(), desired[0]) | |
y2 = x.reshape((12,)) | |
assert y.shape == y2.shape | |
# make a 2d column into 1d. 2d->1d | |
y = x.T.reshape(12) | |
assert np.array_equal(y.toarray(), desired[0]) | |
def test_reshape(self, spcreator): | |
x = spcreator([1, 0, 7, 0, 0, 0, 0, -3, 0, 0, 0, 5]) | |
y = x.reshape((4, 3)) | |
desired = [[1, 0, 7], [0, 0, 0], [0, -3, 0], [0, 0, 5]] | |
assert np.array_equal(y.toarray(), desired) | |
y = x.reshape((12,)) | |
assert y is x | |
y = x.reshape(12) | |
assert np.array_equal(y.toarray(), x.toarray()) | |
def test_sum(self, spcreator): | |
np.random.seed(1234) | |
dat_1 = np.array([0, 1, 2, 3, -4, 5, -6, 7, 9]) | |
dat_2 = np.random.rand(5) | |
dat_3 = np.array([]) | |
dat_4 = np.zeros((40,)) | |
arrays = [dat_1, dat_2, dat_3, dat_4] | |
for dat in arrays: | |
datsp = spcreator(dat) | |
with np.errstate(over='ignore'): | |
assert np.isscalar(datsp.sum()) | |
assert np.allclose(dat.sum(), datsp.sum()) | |
assert np.allclose(dat.sum(axis=None), datsp.sum(axis=None)) | |
assert np.allclose(dat.sum(axis=0), datsp.sum(axis=0)) | |
assert np.allclose(dat.sum(axis=-1), datsp.sum(axis=-1)) | |
# test `out` parameter | |
datsp.sum(axis=0, out=np.zeros(())) | |
def test_sum_invalid_params(self, spcreator): | |
out = np.zeros((3,)) # wrong size for out | |
dat = np.array([0, 1, 2]) | |
datsp = spcreator(dat) | |
with pytest.raises(ValueError, match='axis must be None, -1 or 0'): | |
datsp.sum(axis=1) | |
with pytest.raises(TypeError, match='Tuples are not accepted'): | |
datsp.sum(axis=(0, 1)) | |
with pytest.raises(TypeError, match='axis must be an integer'): | |
datsp.sum(axis=1.5) | |
with pytest.raises(ValueError, match='dimensions do not match'): | |
datsp.sum(axis=0, out=out) | |
def test_numpy_sum(self, spcreator): | |
dat = np.array([0, 1, 2]) | |
datsp = spcreator(dat) | |
dat_sum = np.sum(dat) | |
datsp_sum = np.sum(datsp) | |
assert np.allclose(dat_sum, datsp_sum) | |
def test_mean(self, spcreator): | |
dat = np.array([0, 1, 2]) | |
datsp = spcreator(dat) | |
assert np.allclose(dat.mean(), datsp.mean()) | |
assert np.isscalar(datsp.mean(axis=None)) | |
assert np.allclose(dat.mean(axis=None), datsp.mean(axis=None)) | |
assert np.allclose(dat.mean(axis=0), datsp.mean(axis=0)) | |
assert np.allclose(dat.mean(axis=-1), datsp.mean(axis=-1)) | |
with pytest.raises(ValueError, match='axis'): | |
datsp.mean(axis=1) | |
with pytest.raises(ValueError, match='axis'): | |
datsp.mean(axis=-2) | |
def test_mean_invalid_params(self, spcreator): | |
out = np.asarray(np.zeros((1, 3))) | |
dat = np.array([[0, 1, 2], [3, -4, 5], [-6, 7, 9]]) | |
if spcreator._format == 'uni': | |
with pytest.raises(ValueError, match='zq'): | |
spcreator(dat) | |
return | |
datsp = spcreator(dat) | |
with pytest.raises(ValueError, match='axis out of range'): | |
datsp.mean(axis=3) | |
with pytest.raises(TypeError, match='Tuples are not accepted'): | |
datsp.mean(axis=(0, 1)) | |
with pytest.raises(TypeError, match='axis must be an integer'): | |
datsp.mean(axis=1.5) | |
with pytest.raises(ValueError, match='dimensions do not match'): | |
datsp.mean(axis=1, out=out) | |
def test_sum_dtype(self, spcreator): | |
dat = np.array([0, 1, 2]) | |
datsp = spcreator(dat) | |
for dtype in supported_dtypes: | |
dat_sum = dat.sum(dtype=dtype) | |
datsp_sum = datsp.sum(dtype=dtype) | |
assert np.allclose(dat_sum, datsp_sum) | |
assert np.array_equal(dat_sum.dtype, datsp_sum.dtype) | |
def test_mean_dtype(self, spcreator): | |
dat = np.array([0, 1, 2]) | |
datsp = spcreator(dat) | |
for dtype in supported_dtypes: | |
dat_mean = dat.mean(dtype=dtype) | |
datsp_mean = datsp.mean(dtype=dtype) | |
assert np.allclose(dat_mean, datsp_mean) | |
assert np.array_equal(dat_mean.dtype, datsp_mean.dtype) | |
def test_mean_out(self, spcreator): | |
dat = np.array([0, 1, 2]) | |
datsp = spcreator(dat) | |
dat_out = np.array([0]) | |
datsp_out = np.array([0]) | |
dat.mean(out=dat_out, keepdims=True) | |
datsp.mean(out=datsp_out) | |
assert np.allclose(dat_out, datsp_out) | |
dat.mean(axis=0, out=dat_out, keepdims=True) | |
datsp.mean(axis=0, out=datsp_out) | |
assert np.allclose(dat_out, datsp_out) | |
def test_numpy_mean(self, spcreator): | |
dat = np.array([0, 1, 2]) | |
datsp = spcreator(dat) | |
dat_mean = np.mean(dat) | |
datsp_mean = np.mean(datsp) | |
assert np.allclose(dat_mean, datsp_mean) | |
assert np.array_equal(dat_mean.dtype, datsp_mean.dtype) | |
def test_from_array(self, spcreator): | |
A = np.array([2, 3, 4]) | |
assert np.array_equal(spcreator(A).toarray(), A) | |
A = np.array([1.0 + 3j, 0, -1]) | |
assert np.array_equal(spcreator(A).toarray(), A) | |
assert np.array_equal(spcreator(A, dtype='int16').toarray(), A.astype('int16')) | |
def test_from_list(self, spcreator): | |
A = [2, 3, 4] | |
assert np.array_equal(spcreator(A).toarray(), A) | |
A = [1.0 + 3j, 0, -1] | |
assert np.array_equal(spcreator(A).toarray(), np.array(A)) | |
assert np.array_equal( | |
spcreator(A, dtype='int16').toarray(), np.array(A).astype('int16') | |
) | |
def test_from_sparse(self, spcreator): | |
D = np.array([1, 0, 0]) | |
S = sp.sparse.coo_array(D) | |
assert np.array_equal(spcreator(S).toarray(), D) | |
S = spcreator(D) | |
assert np.array_equal(spcreator(S).toarray(), D) | |
D = np.array([1.0 + 3j, 0, -1]) | |
S = sp.sparse.coo_array(D) | |
assert np.array_equal(spcreator(S).toarray(), D) | |
assert np.array_equal(spcreator(S, dtype='int16').toarray(), D.astype('int16')) | |
S = spcreator(D) | |
assert np.array_equal(spcreator(S).toarray(), D) | |
assert np.array_equal(spcreator(S, dtype='int16').toarray(), D.astype('int16')) | |
def test_toarray(self, spcreator, dat1d): | |
datsp = spcreator(dat1d) | |
# Check C- or F-contiguous (default). | |
chk = datsp.toarray() | |
assert np.array_equal(chk, dat1d) | |
assert chk.flags.c_contiguous == chk.flags.f_contiguous | |
# Check C-contiguous (with arg). | |
chk = datsp.toarray(order='C') | |
assert np.array_equal(chk, dat1d) | |
assert chk.flags.c_contiguous | |
assert chk.flags.f_contiguous | |
# Check F-contiguous (with arg). | |
chk = datsp.toarray(order='F') | |
assert np.array_equal(chk, dat1d) | |
assert chk.flags.c_contiguous | |
assert chk.flags.f_contiguous | |
# Check with output arg. | |
out = np.zeros(datsp.shape, dtype=datsp.dtype) | |
datsp.toarray(out=out) | |
assert np.array_equal(out, dat1d) | |
# Check that things are fine when we don't initialize with zeros. | |
out[...] = 1.0 | |
datsp.toarray(out=out) | |
assert np.array_equal(out, dat1d) | |
# np.dot does not work with sparse matrices (unless scalars) | |
# so this is testing whether dat1d matches datsp.toarray() | |
a = np.array([1.0, 2.0, 3.0, 4.0]) | |
dense_dot_dense = np.dot(a, dat1d) | |
check = np.dot(a, datsp.toarray()) | |
assert np.array_equal(dense_dot_dense, check) | |
b = np.array([1.0, 2.0, 3.0, 4.0]) | |
dense_dot_dense = np.dot(dat1d, b) | |
check = np.dot(datsp.toarray(), b) | |
assert np.array_equal(dense_dot_dense, check) | |
# Check bool data works. | |
spbool = spcreator(dat1d, dtype=bool) | |
arrbool = dat1d.astype(bool) | |
assert np.array_equal(spbool.toarray(), arrbool) | |
def test_add(self, spcreator, datsp_math_dtypes): | |
for dtype, dat, datsp in datsp_math_dtypes[spcreator]: | |
a = dat.copy() | |
a[0] = 2.0 | |
b = datsp | |
c = b + a | |
assert np.array_equal(c, b.toarray() + a) | |
# test broadcasting | |
# Note: cant add nonzero scalar to sparray. Can add len 1 array | |
c = b + a[0:1] | |
assert np.array_equal(c, b.toarray() + a[0]) | |
def test_radd(self, spcreator, datsp_math_dtypes): | |
for dtype, dat, datsp in datsp_math_dtypes[spcreator]: | |
a = dat.copy() | |
a[0] = 2.0 | |
b = datsp | |
c = a + b | |
assert np.array_equal(c, a + b.toarray()) | |
def test_rsub(self, spcreator, datsp_math_dtypes): | |
for dtype, dat, datsp in datsp_math_dtypes[spcreator]: | |
if dtype == np.dtype('bool'): | |
# boolean array subtraction deprecated in 1.9.0 | |
continue | |
assert np.array_equal((dat - datsp), [0, 0, 0, 0]) | |
assert np.array_equal((datsp - dat), [0, 0, 0, 0]) | |
assert np.array_equal((0 - datsp).toarray(), -dat) | |
A = spcreator([1, -4, 0, 2], dtype='d') | |
assert np.array_equal((dat - A), dat - A.toarray()) | |
assert np.array_equal((A - dat), A.toarray() - dat) | |
assert np.array_equal(A.toarray() - datsp, A.toarray() - dat) | |
assert np.array_equal(datsp - A.toarray(), dat - A.toarray()) | |
# test broadcasting | |
assert np.array_equal(dat[:1] - datsp, dat[:1] - dat) | |
def test_matvec(self, spcreator): | |
A = np.array([2, 0, 3.0]) | |
Asp = spcreator(A) | |
col = np.array([[1, 2, 3]]).T | |
assert np.allclose(Asp @ col, Asp.toarray() @ col) | |
assert (A @ np.array([1, 2, 3])).shape == () | |
assert Asp @ np.array([1, 2, 3]) == 11 | |
assert (Asp @ np.array([1, 2, 3])).shape == () | |
assert (Asp @ np.array([[1], [2], [3]])).shape == () | |
# check result type | |
assert isinstance(Asp @ matrix([[1, 2, 3]]).T, np.ndarray) | |
assert (Asp @ np.array([[1, 2, 3]]).T).shape == () | |
# ensure exception is raised for improper dimensions | |
bad_vecs = [np.array([1, 2]), np.array([1, 2, 3, 4]), np.array([[1], [2]])] | |
for x in bad_vecs: | |
with pytest.raises(ValueError, match='dimension mismatch'): | |
Asp.__matmul__(x) | |
# The current relationship between sparse matrix products and array | |
# products is as follows: | |
dot_result = np.dot(Asp.toarray(), [1, 2, 3]) | |
assert np.allclose(Asp @ np.array([1, 2, 3]), dot_result) | |
assert np.allclose(Asp @ [[1], [2], [3]], dot_result.T) | |
# Note that the result of Asp @ x is dense if x has a singleton dimension. | |
def test_rmatvec(self, spcreator, dat1d): | |
M = spcreator(dat1d) | |
assert np.allclose([1, 2, 3, 4] @ M, np.dot([1, 2, 3, 4], M.toarray())) | |
row = np.array([[1, 2, 3, 4]]) | |
assert np.allclose(row @ M, row @ M.toarray()) | |
def test_transpose(self, spcreator, dat1d): | |
for A in [dat1d, np.array([])]: | |
B = spcreator(A) | |
assert np.array_equal(B.toarray(), A) | |
assert np.array_equal(B.transpose().toarray(), A) | |
assert np.array_equal(B.dtype, A.dtype) | |
def test_add_dense_to_sparse(self, spcreator, datsp_math_dtypes): | |
for dtype, dat, datsp in datsp_math_dtypes[spcreator]: | |
sum1 = dat + datsp | |
assert np.array_equal(sum1, dat + dat) | |
sum2 = datsp + dat | |
assert np.array_equal(sum2, dat + dat) | |
def test_iterator(self, spcreator): | |
# test that __iter__ is compatible with NumPy | |
B = np.arange(5) | |
A = spcreator(B) | |
if A.format not in ['coo', 'dia', 'bsr']: | |
for x, y in zip(A, B): | |
assert np.array_equal(x, y) | |
def test_resize(self, spcreator): | |
# resize(shape) resizes the matrix in-place | |
D = np.array([1, 0, 3, 4]) | |
S = spcreator(D) | |
assert S.resize((3,)) is None | |
assert np.array_equal(S.toarray(), [1, 0, 3]) | |
S.resize((5,)) | |
assert np.array_equal(S.toarray(), [1, 0, 3, 0, 0]) | |
class TestGetSet1D: | |
def test_getelement(self, spcreator): | |
D = np.array([4, 3, 0]) | |
A = spcreator(D) | |
N = D.shape[0] | |
for j in range(-N, N): | |
assert np.array_equal(A[j], D[j]) | |
for ij in [3, -4]: | |
with pytest.raises( | |
(IndexError, TypeError), match='index value out of bounds' | |
): | |
A.__getitem__(ij) | |
# single element tuples unwrapped | |
assert A[(0,)] == 4 | |
with pytest.raises(IndexError, match='index value out of bounds'): | |
A.__getitem__((4,)) | |
def test_setelement(self, spcreator): | |
dtype = np.float64 | |
A = spcreator((12,), dtype=dtype) | |
with np.testing.suppress_warnings() as sup: | |
sup.filter( | |
sp.sparse.SparseEfficiencyWarning, | |
"Changing the sparsity structure of a cs[cr]_matrix is expensive", | |
) | |
A[0] = dtype(0) | |
A[1] = dtype(3) | |
A[8] = dtype(9.0) | |
A[-2] = dtype(7) | |
A[5] = 9 | |
A[-9,] = dtype(8) | |
A[1,] = dtype(5) # overwrite using 1-tuple index | |
for ij in [13, -14, (13,), (14,)]: | |
with pytest.raises(IndexError, match='index value out of bounds'): | |
A.__setitem__(ij, 123.0) | |