peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/sparse
/tests
/test_construct.py
"""test sparse matrix construction functions""" | |
import numpy as np | |
from numpy import array | |
from numpy.testing import (assert_equal, assert_, | |
assert_array_equal, assert_array_almost_equal_nulp) | |
import pytest | |
from pytest import raises as assert_raises | |
from scipy._lib._testutils import check_free_memory | |
from scipy._lib._util import check_random_state | |
from scipy.sparse import (csr_matrix, coo_matrix, | |
csr_array, coo_array, | |
sparray, spmatrix, | |
_construct as construct) | |
from scipy.sparse._construct import rand as sprand | |
sparse_formats = ['csr','csc','coo','bsr','dia','lil','dok'] | |
#TODO check whether format=XXX is respected | |
def _sprandn(m, n, density=0.01, format="coo", dtype=None, random_state=None): | |
# Helper function for testing. | |
random_state = check_random_state(random_state) | |
data_rvs = random_state.standard_normal | |
return construct.random(m, n, density, format, dtype, | |
random_state, data_rvs) | |
def _sprandn_array(m, n, density=0.01, format="coo", dtype=None, random_state=None): | |
# Helper function for testing. | |
random_state = check_random_state(random_state) | |
data_sampler = random_state.standard_normal | |
return construct.random_array((m, n), density=density, format=format, dtype=dtype, | |
random_state=random_state, data_sampler=data_sampler) | |
class TestConstructUtils: | |
def test_spdiags(self): | |
diags1 = array([[1, 2, 3, 4, 5]]) | |
diags2 = array([[1, 2, 3, 4, 5], | |
[6, 7, 8, 9,10]]) | |
diags3 = array([[1, 2, 3, 4, 5], | |
[6, 7, 8, 9,10], | |
[11,12,13,14,15]]) | |
cases = [] | |
cases.append((diags1, 0, 1, 1, [[1]])) | |
cases.append((diags1, [0], 1, 1, [[1]])) | |
cases.append((diags1, [0], 2, 1, [[1],[0]])) | |
cases.append((diags1, [0], 1, 2, [[1,0]])) | |
cases.append((diags1, [1], 1, 2, [[0,2]])) | |
cases.append((diags1,[-1], 1, 2, [[0,0]])) | |
cases.append((diags1, [0], 2, 2, [[1,0],[0,2]])) | |
cases.append((diags1,[-1], 2, 2, [[0,0],[1,0]])) | |
cases.append((diags1, [3], 2, 2, [[0,0],[0,0]])) | |
cases.append((diags1, [0], 3, 4, [[1,0,0,0],[0,2,0,0],[0,0,3,0]])) | |
cases.append((diags1, [1], 3, 4, [[0,2,0,0],[0,0,3,0],[0,0,0,4]])) | |
cases.append((diags1, [2], 3, 5, [[0,0,3,0,0],[0,0,0,4,0],[0,0,0,0,5]])) | |
cases.append((diags2, [0,2], 3, 3, [[1,0,8],[0,2,0],[0,0,3]])) | |
cases.append((diags2, [-1,0], 3, 4, [[6,0,0,0],[1,7,0,0],[0,2,8,0]])) | |
cases.append((diags2, [2,-3], 6, 6, [[0,0,3,0,0,0], | |
[0,0,0,4,0,0], | |
[0,0,0,0,5,0], | |
[6,0,0,0,0,0], | |
[0,7,0,0,0,0], | |
[0,0,8,0,0,0]])) | |
cases.append((diags3, [-1,0,1], 6, 6, [[6,12, 0, 0, 0, 0], | |
[1, 7,13, 0, 0, 0], | |
[0, 2, 8,14, 0, 0], | |
[0, 0, 3, 9,15, 0], | |
[0, 0, 0, 4,10, 0], | |
[0, 0, 0, 0, 5, 0]])) | |
cases.append((diags3, [-4,2,-1], 6, 5, [[0, 0, 8, 0, 0], | |
[11, 0, 0, 9, 0], | |
[0,12, 0, 0,10], | |
[0, 0,13, 0, 0], | |
[1, 0, 0,14, 0], | |
[0, 2, 0, 0,15]])) | |
cases.append((diags3, [-1, 1, 2], len(diags3[0]), len(diags3[0]), | |
[[0, 7, 13, 0, 0], | |
[1, 0, 8, 14, 0], | |
[0, 2, 0, 9, 15], | |
[0, 0, 3, 0, 10], | |
[0, 0, 0, 4, 0]])) | |
for d, o, m, n, result in cases: | |
if len(d[0]) == m and m == n: | |
assert_equal(construct.spdiags(d, o).toarray(), result) | |
assert_equal(construct.spdiags(d, o, m, n).toarray(), result) | |
assert_equal(construct.spdiags(d, o, (m, n)).toarray(), result) | |
def test_diags(self): | |
a = array([1, 2, 3, 4, 5]) | |
b = array([6, 7, 8, 9, 10]) | |
c = array([11, 12, 13, 14, 15]) | |
cases = [] | |
cases.append((a[:1], 0, (1, 1), [[1]])) | |
cases.append(([a[:1]], [0], (1, 1), [[1]])) | |
cases.append(([a[:1]], [0], (2, 1), [[1],[0]])) | |
cases.append(([a[:1]], [0], (1, 2), [[1,0]])) | |
cases.append(([a[:1]], [1], (1, 2), [[0,1]])) | |
cases.append(([a[:2]], [0], (2, 2), [[1,0],[0,2]])) | |
cases.append(([a[:1]],[-1], (2, 2), [[0,0],[1,0]])) | |
cases.append(([a[:3]], [0], (3, 4), [[1,0,0,0],[0,2,0,0],[0,0,3,0]])) | |
cases.append(([a[:3]], [1], (3, 4), [[0,1,0,0],[0,0,2,0],[0,0,0,3]])) | |
cases.append(([a[:1]], [-2], (3, 5), [[0,0,0,0,0],[0,0,0,0,0],[1,0,0,0,0]])) | |
cases.append(([a[:2]], [-1], (3, 5), [[0,0,0,0,0],[1,0,0,0,0],[0,2,0,0,0]])) | |
cases.append(([a[:3]], [0], (3, 5), [[1,0,0,0,0],[0,2,0,0,0],[0,0,3,0,0]])) | |
cases.append(([a[:3]], [1], (3, 5), [[0,1,0,0,0],[0,0,2,0,0],[0,0,0,3,0]])) | |
cases.append(([a[:3]], [2], (3, 5), [[0,0,1,0,0],[0,0,0,2,0],[0,0,0,0,3]])) | |
cases.append(([a[:2]], [3], (3, 5), [[0,0,0,1,0],[0,0,0,0,2],[0,0,0,0,0]])) | |
cases.append(([a[:1]], [4], (3, 5), [[0,0,0,0,1],[0,0,0,0,0],[0,0,0,0,0]])) | |
cases.append(([a[:1]], [-4], (5, 3), [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[1,0,0]])) | |
cases.append(([a[:2]], [-3], (5, 3), [[0,0,0],[0,0,0],[0,0,0],[1,0,0],[0,2,0]])) | |
cases.append(([a[:3]], [-2], (5, 3), [[0,0,0],[0,0,0],[1,0,0],[0,2,0],[0,0,3]])) | |
cases.append(([a[:3]], [-1], (5, 3), [[0,0,0],[1,0,0],[0,2,0],[0,0,3],[0,0,0]])) | |
cases.append(([a[:3]], [0], (5, 3), [[1,0,0],[0,2,0],[0,0,3],[0,0,0],[0,0,0]])) | |
cases.append(([a[:2]], [1], (5, 3), [[0,1,0],[0,0,2],[0,0,0],[0,0,0],[0,0,0]])) | |
cases.append(([a[:1]], [2], (5, 3), [[0,0,1],[0,0,0],[0,0,0],[0,0,0],[0,0,0]])) | |
cases.append(([a[:3],b[:1]], [0,2], (3, 3), [[1,0,6],[0,2,0],[0,0,3]])) | |
cases.append(([a[:2],b[:3]], [-1,0], (3, 4), [[6,0,0,0],[1,7,0,0],[0,2,8,0]])) | |
cases.append(([a[:4],b[:3]], [2,-3], (6, 6), [[0,0,1,0,0,0], | |
[0,0,0,2,0,0], | |
[0,0,0,0,3,0], | |
[6,0,0,0,0,4], | |
[0,7,0,0,0,0], | |
[0,0,8,0,0,0]])) | |
cases.append(([a[:4],b,c[:4]], [-1,0,1], (5, 5), [[6,11, 0, 0, 0], | |
[1, 7,12, 0, 0], | |
[0, 2, 8,13, 0], | |
[0, 0, 3, 9,14], | |
[0, 0, 0, 4,10]])) | |
cases.append(([a[:2],b[:3],c], [-4,2,-1], (6, 5), [[0, 0, 6, 0, 0], | |
[11, 0, 0, 7, 0], | |
[0,12, 0, 0, 8], | |
[0, 0,13, 0, 0], | |
[1, 0, 0,14, 0], | |
[0, 2, 0, 0,15]])) | |
# too long arrays are OK | |
cases.append(([a], [0], (1, 1), [[1]])) | |
cases.append(([a[:3],b], [0,2], (3, 3), [[1, 0, 6], [0, 2, 0], [0, 0, 3]])) | |
cases.append(( | |
np.array([[1, 2, 3], [4, 5, 6]]), | |
[0,-1], | |
(3, 3), | |
[[1, 0, 0], [4, 2, 0], [0, 5, 3]] | |
)) | |
# scalar case: broadcasting | |
cases.append(([1,-2,1], [1,0,-1], (3, 3), [[-2, 1, 0], | |
[1, -2, 1], | |
[0, 1, -2]])) | |
for d, o, shape, result in cases: | |
err_msg = f"{d!r} {o!r} {shape!r} {result!r}" | |
assert_equal(construct.diags(d, offsets=o, shape=shape).toarray(), | |
result, err_msg=err_msg) | |
if (shape[0] == shape[1] | |
and hasattr(d[0], '__len__') | |
and len(d[0]) <= max(shape)): | |
# should be able to find the shape automatically | |
assert_equal(construct.diags(d, offsets=o).toarray(), result, | |
err_msg=err_msg) | |
def test_diags_default(self): | |
a = array([1, 2, 3, 4, 5]) | |
assert_equal(construct.diags(a).toarray(), np.diag(a)) | |
def test_diags_default_bad(self): | |
a = array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6]]) | |
assert_raises(ValueError, construct.diags, a) | |
def test_diags_bad(self): | |
a = array([1, 2, 3, 4, 5]) | |
b = array([6, 7, 8, 9, 10]) | |
c = array([11, 12, 13, 14, 15]) | |
cases = [] | |
cases.append(([a[:0]], 0, (1, 1))) | |
cases.append(([a[:4],b,c[:3]], [-1,0,1], (5, 5))) | |
cases.append(([a[:2],c,b[:3]], [-4,2,-1], (6, 5))) | |
cases.append(([a[:2],c,b[:3]], [-4,2,-1], None)) | |
cases.append(([], [-4,2,-1], None)) | |
cases.append(([1], [-5], (4, 4))) | |
cases.append(([a], 0, None)) | |
for d, o, shape in cases: | |
assert_raises(ValueError, construct.diags, d, offsets=o, shape=shape) | |
assert_raises(TypeError, construct.diags, [[None]], offsets=[0]) | |
def test_diags_vs_diag(self): | |
# Check that | |
# | |
# diags([a, b, ...], [i, j, ...]) == diag(a, i) + diag(b, j) + ... | |
# | |
np.random.seed(1234) | |
for n_diags in [1, 2, 3, 4, 5, 10]: | |
n = 1 + n_diags//2 + np.random.randint(0, 10) | |
offsets = np.arange(-n+1, n-1) | |
np.random.shuffle(offsets) | |
offsets = offsets[:n_diags] | |
diagonals = [np.random.rand(n - abs(q)) for q in offsets] | |
mat = construct.diags(diagonals, offsets=offsets) | |
dense_mat = sum([np.diag(x, j) for x, j in zip(diagonals, offsets)]) | |
assert_array_almost_equal_nulp(mat.toarray(), dense_mat) | |
if len(offsets) == 1: | |
mat = construct.diags(diagonals[0], offsets=offsets[0]) | |
dense_mat = np.diag(diagonals[0], offsets[0]) | |
assert_array_almost_equal_nulp(mat.toarray(), dense_mat) | |
def test_diags_dtype(self): | |
x = construct.diags([2.2], offsets=[0], shape=(2, 2), dtype=int) | |
assert_equal(x.dtype, int) | |
assert_equal(x.toarray(), [[2, 0], [0, 2]]) | |
def test_diags_one_diagonal(self): | |
d = list(range(5)) | |
for k in range(-5, 6): | |
assert_equal(construct.diags(d, offsets=k).toarray(), | |
construct.diags([d], offsets=[k]).toarray()) | |
def test_diags_empty(self): | |
x = construct.diags([]) | |
assert_equal(x.shape, (0, 0)) | |
def test_identity(self, identity): | |
assert_equal(identity(1).toarray(), [[1]]) | |
assert_equal(identity(2).toarray(), [[1,0],[0,1]]) | |
I = identity(3, dtype='int8', format='dia') | |
assert_equal(I.dtype, np.dtype('int8')) | |
assert_equal(I.format, 'dia') | |
for fmt in sparse_formats: | |
I = identity(3, format=fmt) | |
assert_equal(I.format, fmt) | |
assert_equal(I.toarray(), [[1,0,0],[0,1,0],[0,0,1]]) | |
def test_eye(self, eye): | |
assert_equal(eye(1,1).toarray(), [[1]]) | |
assert_equal(eye(2,3).toarray(), [[1,0,0],[0,1,0]]) | |
assert_equal(eye(3,2).toarray(), [[1,0],[0,1],[0,0]]) | |
assert_equal(eye(3,3).toarray(), [[1,0,0],[0,1,0],[0,0,1]]) | |
assert_equal(eye(3,3,dtype='int16').dtype, np.dtype('int16')) | |
for m in [3, 5]: | |
for n in [3, 5]: | |
for k in range(-5,6): | |
# scipy.sparse.eye deviates from np.eye here. np.eye will | |
# create arrays of all 0's when the diagonal offset is | |
# greater than the size of the array. For sparse arrays | |
# this makes less sense, especially as it results in dia | |
# arrays with negative diagonals. Therefore sp.sparse.eye | |
# validates that diagonal offsets fall within the shape of | |
# the array. See gh-18555. | |
if (k > 0 and k > n) or (k < 0 and abs(k) > m): | |
with pytest.raises( | |
ValueError, match="Offset.*out of bounds" | |
): | |
eye(m, n, k=k) | |
else: | |
assert_equal( | |
eye(m, n, k=k).toarray(), | |
np.eye(m, n, k=k) | |
) | |
if m == n: | |
assert_equal( | |
eye(m, k=k).toarray(), | |
np.eye(m, n, k=k) | |
) | |
def test_eye_one(self, eye): | |
assert_equal(eye(1).toarray(), [[1]]) | |
assert_equal(eye(2).toarray(), [[1,0],[0,1]]) | |
I = eye(3, dtype='int8', format='dia') | |
assert_equal(I.dtype, np.dtype('int8')) | |
assert_equal(I.format, 'dia') | |
for fmt in sparse_formats: | |
I = eye(3, format=fmt) | |
assert_equal(I.format, fmt) | |
assert_equal(I.toarray(), [[1,0,0],[0,1,0],[0,0,1]]) | |
def test_eye_array_vs_matrix(self): | |
assert isinstance(construct.eye_array(3), sparray) | |
assert not isinstance(construct.eye(3), sparray) | |
def test_kron(self): | |
cases = [] | |
cases.append(array([[0]])) | |
cases.append(array([[-1]])) | |
cases.append(array([[4]])) | |
cases.append(array([[10]])) | |
cases.append(array([[0],[0]])) | |
cases.append(array([[0,0]])) | |
cases.append(array([[1,2],[3,4]])) | |
cases.append(array([[0,2],[5,0]])) | |
cases.append(array([[0,2,-6],[8,0,14]])) | |
cases.append(array([[5,4],[0,0],[6,0]])) | |
cases.append(array([[5,4,4],[1,0,0],[6,0,8]])) | |
cases.append(array([[0,1,0,2,0,5,8]])) | |
cases.append(array([[0.5,0.125,0,3.25],[0,2.5,0,0]])) | |
# test all cases with some formats | |
for a in cases: | |
ca = csr_array(a) | |
for b in cases: | |
cb = csr_array(b) | |
expected = np.kron(a, b) | |
for fmt in sparse_formats[1:4]: | |
result = construct.kron(ca, cb, format=fmt) | |
assert_equal(result.format, fmt) | |
assert_array_equal(result.toarray(), expected) | |
assert isinstance(result, sparray) | |
# test one case with all formats | |
a = cases[-1] | |
b = cases[-3] | |
ca = csr_array(a) | |
cb = csr_array(b) | |
expected = np.kron(a, b) | |
for fmt in sparse_formats: | |
result = construct.kron(ca, cb, format=fmt) | |
assert_equal(result.format, fmt) | |
assert_array_equal(result.toarray(), expected) | |
assert isinstance(result, sparray) | |
# check that spmatrix returned when both inputs are spmatrix | |
result = construct.kron(csr_matrix(a), csr_matrix(b), format=fmt) | |
assert_equal(result.format, fmt) | |
assert_array_equal(result.toarray(), expected) | |
assert isinstance(result, spmatrix) | |
def test_kron_large(self): | |
n = 2**16 | |
a = construct.diags_array([1], shape=(1, n), offsets=n-1) | |
b = construct.diags_array([1], shape=(n, 1), offsets=1-n) | |
construct.kron(a, a) | |
construct.kron(b, b) | |
def test_kronsum(self): | |
cases = [] | |
cases.append(array([[0]])) | |
cases.append(array([[-1]])) | |
cases.append(array([[4]])) | |
cases.append(array([[10]])) | |
cases.append(array([[1,2],[3,4]])) | |
cases.append(array([[0,2],[5,0]])) | |
cases.append(array([[0,2,-6],[8,0,14],[0,3,0]])) | |
cases.append(array([[1,0,0],[0,5,-1],[4,-2,8]])) | |
# test all cases with default format | |
for a in cases: | |
for b in cases: | |
result = construct.kronsum(csr_array(a), csr_array(b)).toarray() | |
expected = (np.kron(np.eye(b.shape[0]), a) | |
+ np.kron(b, np.eye(a.shape[0]))) | |
assert_array_equal(result, expected) | |
# check that spmatrix returned when both inputs are spmatrix | |
result = construct.kronsum(csr_matrix(a), csr_matrix(b)).toarray() | |
assert_array_equal(result, expected) | |
def test_vstack(self, coo_cls): | |
A = coo_cls([[1,2],[3,4]]) | |
B = coo_cls([[5,6]]) | |
expected = array([[1, 2], | |
[3, 4], | |
[5, 6]]) | |
assert_equal(construct.vstack([A, B]).toarray(), expected) | |
assert_equal(construct.vstack([A, B], dtype=np.float32).dtype, | |
np.float32) | |
assert_equal(construct.vstack([A.todok(), B.todok()]).toarray(), expected) | |
assert_equal(construct.vstack([A.tocsr(), B.tocsr()]).toarray(), | |
expected) | |
result = construct.vstack([A.tocsr(), B.tocsr()], | |
format="csr", dtype=np.float32) | |
assert_equal(result.dtype, np.float32) | |
assert_equal(result.indices.dtype, np.int32) | |
assert_equal(result.indptr.dtype, np.int32) | |
assert_equal(construct.vstack([A.tocsc(), B.tocsc()]).toarray(), | |
expected) | |
result = construct.vstack([A.tocsc(), B.tocsc()], | |
format="csc", dtype=np.float32) | |
assert_equal(result.dtype, np.float32) | |
assert_equal(result.indices.dtype, np.int32) | |
assert_equal(result.indptr.dtype, np.int32) | |
def test_vstack_matrix_or_array(self): | |
A = [[1,2],[3,4]] | |
B = [[5,6]] | |
assert isinstance(construct.vstack([coo_array(A), coo_array(B)]), sparray) | |
assert isinstance(construct.vstack([coo_array(A), coo_matrix(B)]), sparray) | |
assert isinstance(construct.vstack([coo_matrix(A), coo_array(B)]), sparray) | |
assert isinstance(construct.vstack([coo_matrix(A), coo_matrix(B)]), spmatrix) | |
def test_hstack(self, coo_cls): | |
A = coo_cls([[1,2],[3,4]]) | |
B = coo_cls([[5],[6]]) | |
expected = array([[1, 2, 5], | |
[3, 4, 6]]) | |
assert_equal(construct.hstack([A, B]).toarray(), expected) | |
assert_equal(construct.hstack([A, B], dtype=np.float32).dtype, | |
np.float32) | |
assert_equal(construct.hstack([A.todok(), B.todok()]).toarray(), expected) | |
assert_equal(construct.hstack([A.tocsc(), B.tocsc()]).toarray(), | |
expected) | |
assert_equal(construct.hstack([A.tocsc(), B.tocsc()], | |
dtype=np.float32).dtype, | |
np.float32) | |
assert_equal(construct.hstack([A.tocsr(), B.tocsr()]).toarray(), | |
expected) | |
assert_equal(construct.hstack([A.tocsr(), B.tocsr()], | |
dtype=np.float32).dtype, | |
np.float32) | |
def test_hstack_matrix_or_array(self): | |
A = [[1,2],[3,4]] | |
B = [[5],[6]] | |
assert isinstance(construct.hstack([coo_array(A), coo_array(B)]), sparray) | |
assert isinstance(construct.hstack([coo_array(A), coo_matrix(B)]), sparray) | |
assert isinstance(construct.hstack([coo_matrix(A), coo_array(B)]), sparray) | |
assert isinstance(construct.hstack([coo_matrix(A), coo_matrix(B)]), spmatrix) | |
def test_block_creation(self, block_array): | |
A = coo_array([[1, 2], [3, 4]]) | |
B = coo_array([[5],[6]]) | |
C = coo_array([[7]]) | |
D = coo_array((0, 0)) | |
expected = array([[1, 2, 5], | |
[3, 4, 6], | |
[0, 0, 7]]) | |
assert_equal(block_array([[A, B], [None, C]]).toarray(), expected) | |
E = csr_array((1, 2), dtype=np.int32) | |
assert_equal(block_array([[A.tocsr(), B.tocsr()], | |
[E, C.tocsr()]]).toarray(), | |
expected) | |
assert_equal(block_array([[A.tocsc(), B.tocsc()], | |
[E.tocsc(), C.tocsc()]]).toarray(), | |
expected) | |
expected = array([[1, 2, 0], | |
[3, 4, 0], | |
[0, 0, 7]]) | |
assert_equal(block_array([[A, None], [None, C]]).toarray(), expected) | |
assert_equal(block_array([[A.tocsr(), E.T.tocsr()], | |
[E, C.tocsr()]]).toarray(), | |
expected) | |
assert_equal(block_array([[A.tocsc(), E.T.tocsc()], | |
[E.tocsc(), C.tocsc()]]).toarray(), | |
expected) | |
Z = csr_array((1, 1), dtype=np.int32) | |
expected = array([[0, 5], | |
[0, 6], | |
[7, 0]]) | |
assert_equal(block_array([[None, B], [C, None]]).toarray(), expected) | |
assert_equal(block_array([[E.T.tocsr(), B.tocsr()], | |
[C.tocsr(), Z]]).toarray(), | |
expected) | |
assert_equal(block_array([[E.T.tocsc(), B.tocsc()], | |
[C.tocsc(), Z.tocsc()]]).toarray(), | |
expected) | |
expected = np.empty((0, 0)) | |
assert_equal(block_array([[None, None]]).toarray(), expected) | |
assert_equal(block_array([[None, D], [D, None]]).toarray(), | |
expected) | |
# test bug reported in gh-5976 | |
expected = array([[7]]) | |
assert_equal(block_array([[None, D], [C, None]]).toarray(), | |
expected) | |
# test failure cases | |
with assert_raises(ValueError) as excinfo: | |
block_array([[A], [B]]) | |
excinfo.match(r'Got blocks\[1,0\]\.shape\[1\] == 1, expected 2') | |
with assert_raises(ValueError) as excinfo: | |
block_array([[A.tocsr()], [B.tocsr()]]) | |
excinfo.match(r'incompatible dimensions for axis 1') | |
with assert_raises(ValueError) as excinfo: | |
block_array([[A.tocsc()], [B.tocsc()]]) | |
excinfo.match(r'Mismatching dimensions along axis 1: ({1, 2}|{2, 1})') | |
with assert_raises(ValueError) as excinfo: | |
block_array([[A, C]]) | |
excinfo.match(r'Got blocks\[0,1\]\.shape\[0\] == 1, expected 2') | |
with assert_raises(ValueError) as excinfo: | |
block_array([[A.tocsr(), C.tocsr()]]) | |
excinfo.match(r'Mismatching dimensions along axis 0: ({1, 2}|{2, 1})') | |
with assert_raises(ValueError) as excinfo: | |
block_array([[A.tocsc(), C.tocsc()]]) | |
excinfo.match(r'incompatible dimensions for axis 0') | |
def test_block_return_type(self): | |
block = construct.block_array | |
# csr format ensures we hit _compressed_sparse_stack | |
# shape of F,G ensure we hit _stack_along_minor_axis | |
# list version ensure we hit the path with neither helper function | |
Fl, Gl = [[1, 2],[3, 4]], [[7], [5]] | |
Fm, Gm = csr_matrix(Fl), csr_matrix(Gl) | |
assert isinstance(block([[None, Fl], [Gl, None]], format="csr"), sparray) | |
assert isinstance(block([[None, Fm], [Gm, None]], format="csr"), sparray) | |
assert isinstance(block([[Fm, Gm]], format="csr"), sparray) | |
def test_bmat_return_type(self): | |
"""This can be removed after sparse matrix is removed""" | |
bmat = construct.bmat | |
# check return type. if any input _is_array output array, else matrix | |
Fl, Gl = [[1, 2],[3, 4]], [[7], [5]] | |
Fm, Gm = csr_matrix(Fl), csr_matrix(Gl) | |
Fa, Ga = csr_array(Fl), csr_array(Gl) | |
assert isinstance(bmat([[Fa, Ga]], format="csr"), sparray) | |
assert isinstance(bmat([[Fm, Gm]], format="csr"), spmatrix) | |
assert isinstance(bmat([[None, Fa], [Ga, None]], format="csr"), sparray) | |
assert isinstance(bmat([[None, Fm], [Ga, None]], format="csr"), sparray) | |
assert isinstance(bmat([[None, Fm], [Gm, None]], format="csr"), spmatrix) | |
assert isinstance(bmat([[None, Fl], [Gl, None]], format="csr"), spmatrix) | |
# type returned by _compressed_sparse_stack (all csr) | |
assert isinstance(bmat([[Ga, Ga]], format="csr"), sparray) | |
assert isinstance(bmat([[Gm, Ga]], format="csr"), sparray) | |
assert isinstance(bmat([[Ga, Gm]], format="csr"), sparray) | |
assert isinstance(bmat([[Gm, Gm]], format="csr"), spmatrix) | |
# shape is 2x2 so no _stack_along_minor_axis | |
assert isinstance(bmat([[Fa, Fm]], format="csr"), sparray) | |
assert isinstance(bmat([[Fm, Fm]], format="csr"), spmatrix) | |
# type returned by _compressed_sparse_stack (all csc) | |
assert isinstance(bmat([[Gm.tocsc(), Ga.tocsc()]], format="csc"), sparray) | |
assert isinstance(bmat([[Gm.tocsc(), Gm.tocsc()]], format="csc"), spmatrix) | |
# shape is 2x2 so no _stack_along_minor_axis | |
assert isinstance(bmat([[Fa.tocsc(), Fm.tocsc()]], format="csr"), sparray) | |
assert isinstance(bmat([[Fm.tocsc(), Fm.tocsc()]], format="csr"), spmatrix) | |
# type returned when mixed input | |
assert isinstance(bmat([[Gl, Ga]], format="csr"), sparray) | |
assert isinstance(bmat([[Gm.tocsc(), Ga]], format="csr"), sparray) | |
assert isinstance(bmat([[Gm.tocsc(), Gm]], format="csr"), spmatrix) | |
assert isinstance(bmat([[Gm, Gm]], format="csc"), spmatrix) | |
def test_concatenate_int32_overflow(self): | |
""" test for indptr overflow when concatenating matrices """ | |
check_free_memory(30000) | |
n = 33000 | |
A = csr_array(np.ones((n, n), dtype=bool)) | |
B = A.copy() | |
C = construct._compressed_sparse_stack((A, B), axis=0, | |
return_spmatrix=False) | |
assert_(np.all(np.equal(np.diff(C.indptr), n))) | |
assert_equal(C.indices.dtype, np.int64) | |
assert_equal(C.indptr.dtype, np.int64) | |
def test_block_diag_basic(self): | |
""" basic test for block_diag """ | |
A = coo_array([[1,2],[3,4]]) | |
B = coo_array([[5],[6]]) | |
C = coo_array([[7]]) | |
expected = array([[1, 2, 0, 0], | |
[3, 4, 0, 0], | |
[0, 0, 5, 0], | |
[0, 0, 6, 0], | |
[0, 0, 0, 7]]) | |
assert_equal(construct.block_diag((A, B, C)).toarray(), expected) | |
def test_block_diag_scalar_1d_args(self): | |
""" block_diag with scalar and 1d arguments """ | |
# one 1d matrix and a scalar | |
assert_array_equal(construct.block_diag([[2,3], 4]).toarray(), | |
[[2, 3, 0], [0, 0, 4]]) | |
# 1d sparse arrays | |
A = coo_array([1,0,3]) | |
B = coo_array([0,4]) | |
assert_array_equal(construct.block_diag([A, B]).toarray(), | |
[[1, 0, 3, 0, 0], [0, 0, 0, 0, 4]]) | |
def test_block_diag_1(self): | |
""" block_diag with one matrix """ | |
assert_equal(construct.block_diag([[1, 0]]).toarray(), | |
array([[1, 0]])) | |
assert_equal(construct.block_diag([[[1, 0]]]).toarray(), | |
array([[1, 0]])) | |
assert_equal(construct.block_diag([[[1], [0]]]).toarray(), | |
array([[1], [0]])) | |
# just on scalar | |
assert_equal(construct.block_diag([1]).toarray(), | |
array([[1]])) | |
def test_block_diag_sparse_arrays(self): | |
""" block_diag with sparse arrays """ | |
A = coo_array([[1, 2, 3]], shape=(1, 3)) | |
B = coo_array([[4, 5]], shape=(1, 2)) | |
assert_equal(construct.block_diag([A, B]).toarray(), | |
array([[1, 2, 3, 0, 0], [0, 0, 0, 4, 5]])) | |
A = coo_array([[1], [2], [3]], shape=(3, 1)) | |
B = coo_array([[4], [5]], shape=(2, 1)) | |
assert_equal(construct.block_diag([A, B]).toarray(), | |
array([[1, 0], [2, 0], [3, 0], [0, 4], [0, 5]])) | |
def test_block_diag_return_type(self): | |
A, B = coo_array([[1, 2, 3]]), coo_matrix([[2, 3, 4]]) | |
assert isinstance(construct.block_diag([A, A]), sparray) | |
assert isinstance(construct.block_diag([A, B]), sparray) | |
assert isinstance(construct.block_diag([B, A]), sparray) | |
assert isinstance(construct.block_diag([B, B]), spmatrix) | |
def test_random_sampling(self): | |
# Simple sanity checks for sparse random sampling. | |
for f in sprand, _sprandn: | |
for t in [np.float32, np.float64, np.longdouble, | |
np.int32, np.int64, np.complex64, np.complex128]: | |
x = f(5, 10, density=0.1, dtype=t) | |
assert_equal(x.dtype, t) | |
assert_equal(x.shape, (5, 10)) | |
assert_equal(x.nnz, 5) | |
x1 = f(5, 10, density=0.1, random_state=4321) | |
assert_equal(x1.dtype, np.float64) | |
x2 = f(5, 10, density=0.1, | |
random_state=np.random.RandomState(4321)) | |
assert_array_equal(x1.data, x2.data) | |
assert_array_equal(x1.row, x2.row) | |
assert_array_equal(x1.col, x2.col) | |
for density in [0.0, 0.1, 0.5, 1.0]: | |
x = f(5, 10, density=density) | |
assert_equal(x.nnz, int(density * np.prod(x.shape))) | |
for fmt in ['coo', 'csc', 'csr', 'lil']: | |
x = f(5, 10, format=fmt) | |
assert_equal(x.format, fmt) | |
assert_raises(ValueError, lambda: f(5, 10, 1.1)) | |
assert_raises(ValueError, lambda: f(5, 10, -0.1)) | |
def test_rand(self): | |
# Simple distributional checks for sparse.rand. | |
random_states = [None, 4321, np.random.RandomState()] | |
try: | |
gen = np.random.default_rng() | |
random_states.append(gen) | |
except AttributeError: | |
pass | |
for random_state in random_states: | |
x = sprand(10, 20, density=0.5, dtype=np.float64, | |
random_state=random_state) | |
assert_(np.all(np.less_equal(0, x.data))) | |
assert_(np.all(np.less_equal(x.data, 1))) | |
def test_randn(self): | |
# Simple distributional checks for sparse.randn. | |
# Statistically, some of these should be negative | |
# and some should be greater than 1. | |
random_states = [None, 4321, np.random.RandomState()] | |
try: | |
gen = np.random.default_rng() | |
random_states.append(gen) | |
except AttributeError: | |
pass | |
for rs in random_states: | |
x = _sprandn(10, 20, density=0.5, dtype=np.float64, random_state=rs) | |
assert_(np.any(np.less(x.data, 0))) | |
assert_(np.any(np.less(1, x.data))) | |
x = _sprandn_array(10, 20, density=0.5, dtype=np.float64, random_state=rs) | |
assert_(np.any(np.less(x.data, 0))) | |
assert_(np.any(np.less(1, x.data))) | |
def test_random_accept_str_dtype(self): | |
# anything that np.dtype can convert to a dtype should be accepted | |
# for the dtype | |
construct.random(10, 10, dtype='d') | |
construct.random_array((10, 10), dtype='d') | |
def test_random_sparse_matrix_returns_correct_number_of_non_zero_elements(self): | |
# A 10 x 10 matrix, with density of 12.65%, should have 13 nonzero elements. | |
# 10 x 10 x 0.1265 = 12.65, which should be rounded up to 13, not 12. | |
sparse_matrix = construct.random(10, 10, density=0.1265) | |
assert_equal(sparse_matrix.count_nonzero(),13) | |
# check random_array | |
sparse_array = construct.random_array((10, 10), density=0.1265) | |
assert_equal(sparse_array.count_nonzero(),13) | |
assert isinstance(sparse_array, sparray) | |
# check big size | |
shape = (2**33, 2**33) | |
sparse_array = construct.random_array(shape, density=2.7105e-17) | |
assert_equal(sparse_array.count_nonzero(),2000) | |
def test_diags_array(): | |
"""Tests of diags_array that do not rely on diags wrapper.""" | |
diag = np.arange(1, 5) | |
assert_array_equal(construct.diags_array(diag).toarray(), np.diag(diag)) | |
assert_array_equal( | |
construct.diags_array(diag, offsets=2).toarray(), np.diag(diag, k=2) | |
) | |
assert_array_equal( | |
construct.diags_array(diag, offsets=2, shape=(4, 4)).toarray(), | |
np.diag(diag, k=2)[:4, :4] | |
) | |
# Offset outside bounds when shape specified | |
with pytest.raises(ValueError, match=".*out of bounds"): | |
construct.diags(np.arange(1, 5), 5, shape=(4, 4)) | |