peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/sparse
/tests
/test_csc.py
import numpy as np | |
from numpy.testing import assert_array_almost_equal, assert_ | |
from scipy.sparse import csr_matrix, csc_matrix, lil_matrix | |
import pytest | |
def test_csc_getrow(): | |
N = 10 | |
np.random.seed(0) | |
X = np.random.random((N, N)) | |
X[X > 0.7] = 0 | |
Xcsc = csc_matrix(X) | |
for i in range(N): | |
arr_row = X[i:i + 1, :] | |
csc_row = Xcsc.getrow(i) | |
assert_array_almost_equal(arr_row, csc_row.toarray()) | |
assert_(type(csc_row) is csr_matrix) | |
def test_csc_getcol(): | |
N = 10 | |
np.random.seed(0) | |
X = np.random.random((N, N)) | |
X[X > 0.7] = 0 | |
Xcsc = csc_matrix(X) | |
for i in range(N): | |
arr_col = X[:, i:i + 1] | |
csc_col = Xcsc.getcol(i) | |
assert_array_almost_equal(arr_col, csc_col.toarray()) | |
assert_(type(csc_col) is csc_matrix) | |
def test_csc_empty_slices(matrix_input, axis, expected_shape): | |
# see gh-11127 for related discussion | |
slice_1 = matrix_input.toarray().shape[0] - 1 | |
slice_2 = slice_1 | |
slice_3 = slice_2 - 1 | |
if axis == 0: | |
actual_shape_1 = matrix_input[slice_1:slice_2, :].toarray().shape | |
actual_shape_2 = matrix_input[slice_1:slice_3, :].toarray().shape | |
elif axis == 1: | |
actual_shape_1 = matrix_input[:, slice_1:slice_2].toarray().shape | |
actual_shape_2 = matrix_input[:, slice_1:slice_3].toarray().shape | |
elif axis == 'both': | |
actual_shape_1 = matrix_input[slice_1:slice_2, slice_1:slice_2].toarray().shape | |
actual_shape_2 = matrix_input[slice_1:slice_3, slice_1:slice_3].toarray().shape | |
assert actual_shape_1 == expected_shape | |
assert actual_shape_1 == actual_shape_2 | |
def test_argmax_overflow(ax): | |
# See gh-13646: Windows integer overflow for large sparse matrices. | |
dim = (100000, 100000) | |
A = lil_matrix(dim) | |
A[-2, -2] = 42 | |
A[-3, -3] = 0.1234 | |
A = csc_matrix(A) | |
idx = A.argmax(axis=ax) | |
if ax is None: | |
# idx is a single flattened index | |
# that we need to convert to a 2d index pair; | |
# can't do this with np.unravel_index because | |
# the dimensions are too large | |
ii = idx % dim[0] | |
jj = idx // dim[0] | |
else: | |
# idx is an array of size of A.shape[ax]; | |
# check the max index to make sure no overflows | |
# we encountered | |
assert np.count_nonzero(idx) == A.nnz | |
ii, jj = np.max(idx), np.argmax(idx) | |
assert A[ii, jj] == A[-2, -2] | |