peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/sparse
/tests
/test_sparsetools.py
import sys | |
import os | |
import gc | |
import threading | |
import numpy as np | |
from numpy.testing import assert_equal, assert_, assert_allclose | |
from scipy.sparse import (_sparsetools, coo_matrix, csr_matrix, csc_matrix, | |
bsr_matrix, dia_matrix) | |
from scipy.sparse._sputils import supported_dtypes | |
from scipy._lib._testutils import check_free_memory | |
import pytest | |
from pytest import raises as assert_raises | |
def int_to_int8(n): | |
""" | |
Wrap an integer to the interval [-128, 127]. | |
""" | |
return (n + 128) % 256 - 128 | |
def test_exception(): | |
assert_raises(MemoryError, _sparsetools.test_throw_error) | |
def test_threads(): | |
# Smoke test for parallel threaded execution; doesn't actually | |
# check that code runs in parallel, but just that it produces | |
# expected results. | |
nthreads = 10 | |
niter = 100 | |
n = 20 | |
a = csr_matrix(np.ones([n, n])) | |
bres = [] | |
class Worker(threading.Thread): | |
def run(self): | |
b = a.copy() | |
for j in range(niter): | |
_sparsetools.csr_plus_csr(n, n, | |
a.indptr, a.indices, a.data, | |
a.indptr, a.indices, a.data, | |
b.indptr, b.indices, b.data) | |
bres.append(b) | |
threads = [Worker() for _ in range(nthreads)] | |
for thread in threads: | |
thread.start() | |
for thread in threads: | |
thread.join() | |
for b in bres: | |
assert_(np.all(b.toarray() == 2)) | |
def test_regression_std_vector_dtypes(): | |
# Regression test for gh-3780, checking the std::vector typemaps | |
# in sparsetools.cxx are complete. | |
for dtype in supported_dtypes: | |
ad = np.array([[1, 2], [3, 4]]).astype(dtype) | |
a = csr_matrix(ad, dtype=dtype) | |
# getcol is one function using std::vector typemaps, and should not fail | |
assert_equal(a.getcol(0).toarray(), ad[:, :1]) | |
def test_nnz_overflow(): | |
# Regression test for gh-7230 / gh-7871, checking that coo_toarray | |
# with nnz > int32max doesn't overflow. | |
nnz = np.iinfo(np.int32).max + 1 | |
# Ensure ~20 GB of RAM is free to run this test. | |
check_free_memory((4 + 4 + 1) * nnz / 1e6 + 0.5) | |
# Use nnz duplicate entries to keep the dense version small. | |
row = np.zeros(nnz, dtype=np.int32) | |
col = np.zeros(nnz, dtype=np.int32) | |
data = np.zeros(nnz, dtype=np.int8) | |
data[-1] = 4 | |
s = coo_matrix((data, (row, col)), shape=(1, 1), copy=False) | |
# Sums nnz duplicates to produce a 1x1 array containing 4. | |
d = s.toarray() | |
assert_allclose(d, [[4]]) | |
class TestInt32Overflow: | |
""" | |
Some of the sparsetools routines use dense 2D matrices whose | |
total size is not bounded by the nnz of the sparse matrix. These | |
routines used to suffer from int32 wraparounds; here, we try to | |
check that the wraparounds don't occur any more. | |
""" | |
# choose n large enough | |
n = 50000 | |
def setup_method(self): | |
assert self.n**2 > np.iinfo(np.int32).max | |
# check there's enough memory even if everything is run at the | |
# same time | |
try: | |
parallel_count = int(os.environ.get('PYTEST_XDIST_WORKER_COUNT', '1')) | |
except ValueError: | |
parallel_count = np.inf | |
check_free_memory(3000 * parallel_count) | |
def teardown_method(self): | |
gc.collect() | |
def test_coo_todense(self): | |
# Check *_todense routines (cf. gh-2179) | |
# | |
# All of them in the end call coo_matrix.todense | |
n = self.n | |
i = np.array([0, n-1]) | |
j = np.array([0, n-1]) | |
data = np.array([1, 2], dtype=np.int8) | |
m = coo_matrix((data, (i, j))) | |
r = m.todense() | |
assert_equal(r[0,0], 1) | |
assert_equal(r[-1,-1], 2) | |
del r | |
gc.collect() | |
def test_matvecs(self): | |
# Check *_matvecs routines | |
n = self.n | |
i = np.array([0, n-1]) | |
j = np.array([0, n-1]) | |
data = np.array([1, 2], dtype=np.int8) | |
m = coo_matrix((data, (i, j))) | |
b = np.ones((n, n), dtype=np.int8) | |
for sptype in (csr_matrix, csc_matrix, bsr_matrix): | |
m2 = sptype(m) | |
r = m2.dot(b) | |
assert_equal(r[0,0], 1) | |
assert_equal(r[-1,-1], 2) | |
del r | |
gc.collect() | |
del b | |
gc.collect() | |
def test_dia_matvec(self): | |
# Check: huge dia_matrix _matvec | |
n = self.n | |
data = np.ones((n, n), dtype=np.int8) | |
offsets = np.arange(n) | |
m = dia_matrix((data, offsets), shape=(n, n)) | |
v = np.ones(m.shape[1], dtype=np.int8) | |
r = m.dot(v) | |
assert_equal(r[0], int_to_int8(n)) | |
del data, offsets, m, v, r | |
gc.collect() | |
_bsr_ops = [pytest.param("matmat", marks=pytest.mark.xslow), | |
pytest.param("matvecs", marks=pytest.mark.xslow), | |
"matvec", | |
"diagonal", | |
"sort_indices", | |
pytest.param("transpose", marks=pytest.mark.xslow)] | |
def test_bsr_1_block(self, op): | |
# Check: huge bsr_matrix (1-block) | |
# | |
# The point here is that indices inside a block may overflow. | |
def get_matrix(): | |
n = self.n | |
data = np.ones((1, n, n), dtype=np.int8) | |
indptr = np.array([0, 1], dtype=np.int32) | |
indices = np.array([0], dtype=np.int32) | |
m = bsr_matrix((data, indices, indptr), blocksize=(n, n), copy=False) | |
del data, indptr, indices | |
return m | |
gc.collect() | |
try: | |
getattr(self, "_check_bsr_" + op)(get_matrix) | |
finally: | |
gc.collect() | |
def test_bsr_n_block(self, op): | |
# Check: huge bsr_matrix (n-block) | |
# | |
# The point here is that while indices within a block don't | |
# overflow, accumulators across many block may. | |
def get_matrix(): | |
n = self.n | |
data = np.ones((n, n, 1), dtype=np.int8) | |
indptr = np.array([0, n], dtype=np.int32) | |
indices = np.arange(n, dtype=np.int32) | |
m = bsr_matrix((data, indices, indptr), blocksize=(n, 1), copy=False) | |
del data, indptr, indices | |
return m | |
gc.collect() | |
try: | |
getattr(self, "_check_bsr_" + op)(get_matrix) | |
finally: | |
gc.collect() | |
def _check_bsr_matvecs(self, m): # skip name check | |
m = m() | |
n = self.n | |
# _matvecs | |
r = m.dot(np.ones((n, 2), dtype=np.int8)) | |
assert_equal(r[0, 0], int_to_int8(n)) | |
def _check_bsr_matvec(self, m): # skip name check | |
m = m() | |
n = self.n | |
# _matvec | |
r = m.dot(np.ones((n,), dtype=np.int8)) | |
assert_equal(r[0], int_to_int8(n)) | |
def _check_bsr_diagonal(self, m): # skip name check | |
m = m() | |
n = self.n | |
# _diagonal | |
r = m.diagonal() | |
assert_equal(r, np.ones(n)) | |
def _check_bsr_sort_indices(self, m): # skip name check | |
# _sort_indices | |
m = m() | |
m.sort_indices() | |
def _check_bsr_transpose(self, m): # skip name check | |
# _transpose | |
m = m() | |
m.transpose() | |
def _check_bsr_matmat(self, m): # skip name check | |
m = m() | |
n = self.n | |
# _bsr_matmat | |
m2 = bsr_matrix(np.ones((n, 2), dtype=np.int8), blocksize=(m.blocksize[1], 2)) | |
m.dot(m2) # shouldn't SIGSEGV | |
del m2 | |
# _bsr_matmat | |
m2 = bsr_matrix(np.ones((2, n), dtype=np.int8), blocksize=(2, m.blocksize[0])) | |
m2.dot(m) # shouldn't SIGSEGV | |
def test_csr_matmat_int64_overflow(): | |
n = 3037000500 | |
assert n**2 > np.iinfo(np.int64).max | |
# the test would take crazy amounts of memory | |
check_free_memory(n * (8*2 + 1) * 3 / 1e6) | |
# int64 overflow | |
data = np.ones((n,), dtype=np.int8) | |
indptr = np.arange(n+1, dtype=np.int64) | |
indices = np.zeros(n, dtype=np.int64) | |
a = csr_matrix((data, indices, indptr)) | |
b = a.T | |
assert_raises(RuntimeError, a.dot, b) | |
def test_upcast(): | |
a0 = csr_matrix([[np.pi, np.pi*1j], [3, 4]], dtype=complex) | |
b0 = np.array([256+1j, 2**32], dtype=complex) | |
for a_dtype in supported_dtypes: | |
for b_dtype in supported_dtypes: | |
msg = f"({a_dtype!r}, {b_dtype!r})" | |
if np.issubdtype(a_dtype, np.complexfloating): | |
a = a0.copy().astype(a_dtype) | |
else: | |
a = a0.real.copy().astype(a_dtype) | |
if np.issubdtype(b_dtype, np.complexfloating): | |
b = b0.copy().astype(b_dtype) | |
else: | |
with np.errstate(invalid="ignore"): | |
# Casting a large value (2**32) to int8 causes a warning in | |
# numpy >1.23 | |
b = b0.real.copy().astype(b_dtype) | |
if not (a_dtype == np.bool_ and b_dtype == np.bool_): | |
c = np.zeros((2,), dtype=np.bool_) | |
assert_raises(ValueError, _sparsetools.csr_matvec, | |
2, 2, a.indptr, a.indices, a.data, b, c) | |
if ((np.issubdtype(a_dtype, np.complexfloating) and | |
not np.issubdtype(b_dtype, np.complexfloating)) or | |
(not np.issubdtype(a_dtype, np.complexfloating) and | |
np.issubdtype(b_dtype, np.complexfloating))): | |
c = np.zeros((2,), dtype=np.float64) | |
assert_raises(ValueError, _sparsetools.csr_matvec, | |
2, 2, a.indptr, a.indices, a.data, b, c) | |
c = np.zeros((2,), dtype=np.result_type(a_dtype, b_dtype)) | |
_sparsetools.csr_matvec(2, 2, a.indptr, a.indices, a.data, b, c) | |
assert_allclose(c, np.dot(a.toarray(), b), err_msg=msg) | |
def test_endianness(): | |
d = np.ones((3,4)) | |
offsets = [-1,0,1] | |
a = dia_matrix((d.astype('<f8'), offsets), (4, 4)) | |
b = dia_matrix((d.astype('>f8'), offsets), (4, 4)) | |
v = np.arange(4) | |
assert_allclose(a.dot(v), [1, 3, 6, 5]) | |
assert_allclose(b.dot(v), [1, 3, 6, 5]) | |