peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/special
/tests
/test_gammainc.py
import pytest | |
import numpy as np | |
from numpy.testing import assert_allclose, assert_array_equal | |
import scipy.special as sc | |
from scipy.special._testutils import FuncData | |
INVALID_POINTS = [ | |
(1, -1), | |
(0, 0), | |
(-1, 1), | |
(np.nan, 1), | |
(1, np.nan) | |
] | |
class TestGammainc: | |
def test_domain(self, a, x): | |
assert np.isnan(sc.gammainc(a, x)) | |
def test_a_eq_0_x_gt_0(self): | |
assert sc.gammainc(0, 1) == 1 | |
def test_infinite_arguments(self, a, x, desired): | |
result = sc.gammainc(a, x) | |
if np.isnan(desired): | |
assert np.isnan(result) | |
else: | |
assert result == desired | |
def test_infinite_limits(self): | |
# Test that large arguments converge to the hard-coded limits | |
# at infinity. | |
assert_allclose( | |
sc.gammainc(1000, 100), | |
sc.gammainc(np.inf, 100), | |
atol=1e-200, # Use `atol` since the function converges to 0. | |
rtol=0 | |
) | |
assert sc.gammainc(100, 1000) == sc.gammainc(100, np.inf) | |
def test_x_zero(self): | |
a = np.arange(1, 10) | |
assert_array_equal(sc.gammainc(a, 0), 0) | |
def test_limit_check(self): | |
result = sc.gammainc(1e-10, 1) | |
limit = sc.gammainc(0, 1) | |
assert np.isclose(result, limit) | |
def gammainc_line(self, x): | |
# The line a = x where a simpler asymptotic expansion (analog | |
# of DLMF 8.12.15) is available. | |
c = np.array([-1/3, -1/540, 25/6048, 101/155520, | |
-3184811/3695155200, -2745493/8151736420]) | |
res = 0 | |
xfac = 1 | |
for ck in c: | |
res -= ck*xfac | |
xfac /= x | |
res /= np.sqrt(2*np.pi*x) | |
res += 0.5 | |
return res | |
def test_line(self): | |
x = np.logspace(np.log10(25), 300, 500) | |
a = x | |
dataset = np.vstack((a, x, self.gammainc_line(x))).T | |
FuncData(sc.gammainc, dataset, (0, 1), 2, rtol=1e-11).check() | |
def test_roundtrip(self): | |
a = np.logspace(-5, 10, 100) | |
x = np.logspace(-5, 10, 100) | |
y = sc.gammaincinv(a, sc.gammainc(a, x)) | |
assert_allclose(x, y, rtol=1e-10) | |
class TestGammaincc: | |
def test_domain(self, a, x): | |
assert np.isnan(sc.gammaincc(a, x)) | |
def test_a_eq_0_x_gt_0(self): | |
assert sc.gammaincc(0, 1) == 0 | |
def test_infinite_arguments(self, a, x, desired): | |
result = sc.gammaincc(a, x) | |
if np.isnan(desired): | |
assert np.isnan(result) | |
else: | |
assert result == desired | |
def test_infinite_limits(self): | |
# Test that large arguments converge to the hard-coded limits | |
# at infinity. | |
assert sc.gammaincc(1000, 100) == sc.gammaincc(np.inf, 100) | |
assert_allclose( | |
sc.gammaincc(100, 1000), | |
sc.gammaincc(100, np.inf), | |
atol=1e-200, # Use `atol` since the function converges to 0. | |
rtol=0 | |
) | |
def test_limit_check(self): | |
result = sc.gammaincc(1e-10,1) | |
limit = sc.gammaincc(0,1) | |
assert np.isclose(result, limit) | |
def test_x_zero(self): | |
a = np.arange(1, 10) | |
assert_array_equal(sc.gammaincc(a, 0), 1) | |
def test_roundtrip(self): | |
a = np.logspace(-5, 10, 100) | |
x = np.logspace(-5, 10, 100) | |
y = sc.gammainccinv(a, sc.gammaincc(a, x)) | |
assert_allclose(x, y, rtol=1e-14) | |