peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/stats
/_binomtest.py
from math import sqrt | |
import numpy as np | |
from scipy._lib._util import _validate_int | |
from scipy.optimize import brentq | |
from scipy.special import ndtri | |
from ._discrete_distns import binom | |
from ._common import ConfidenceInterval | |
class BinomTestResult: | |
""" | |
Result of `scipy.stats.binomtest`. | |
Attributes | |
---------- | |
k : int | |
The number of successes (copied from `binomtest` input). | |
n : int | |
The number of trials (copied from `binomtest` input). | |
alternative : str | |
Indicates the alternative hypothesis specified in the input | |
to `binomtest`. It will be one of ``'two-sided'``, ``'greater'``, | |
or ``'less'``. | |
statistic: float | |
The estimate of the proportion of successes. | |
pvalue : float | |
The p-value of the hypothesis test. | |
""" | |
def __init__(self, k, n, alternative, statistic, pvalue): | |
self.k = k | |
self.n = n | |
self.alternative = alternative | |
self.statistic = statistic | |
self.pvalue = pvalue | |
# add alias for backward compatibility | |
self.proportion_estimate = statistic | |
def __repr__(self): | |
s = ("BinomTestResult(" | |
f"k={self.k}, " | |
f"n={self.n}, " | |
f"alternative={self.alternative!r}, " | |
f"statistic={self.statistic}, " | |
f"pvalue={self.pvalue})") | |
return s | |
def proportion_ci(self, confidence_level=0.95, method='exact'): | |
""" | |
Compute the confidence interval for ``statistic``. | |
Parameters | |
---------- | |
confidence_level : float, optional | |
Confidence level for the computed confidence interval | |
of the estimated proportion. Default is 0.95. | |
method : {'exact', 'wilson', 'wilsoncc'}, optional | |
Selects the method used to compute the confidence interval | |
for the estimate of the proportion: | |
'exact' : | |
Use the Clopper-Pearson exact method [1]_. | |
'wilson' : | |
Wilson's method, without continuity correction ([2]_, [3]_). | |
'wilsoncc' : | |
Wilson's method, with continuity correction ([2]_, [3]_). | |
Default is ``'exact'``. | |
Returns | |
------- | |
ci : ``ConfidenceInterval`` object | |
The object has attributes ``low`` and ``high`` that hold the | |
lower and upper bounds of the confidence interval. | |
References | |
---------- | |
.. [1] C. J. Clopper and E. S. Pearson, The use of confidence or | |
fiducial limits illustrated in the case of the binomial, | |
Biometrika, Vol. 26, No. 4, pp 404-413 (Dec. 1934). | |
.. [2] E. B. Wilson, Probable inference, the law of succession, and | |
statistical inference, J. Amer. Stat. Assoc., 22, pp 209-212 | |
(1927). | |
.. [3] Robert G. Newcombe, Two-sided confidence intervals for the | |
single proportion: comparison of seven methods, Statistics | |
in Medicine, 17, pp 857-872 (1998). | |
Examples | |
-------- | |
>>> from scipy.stats import binomtest | |
>>> result = binomtest(k=7, n=50, p=0.1) | |
>>> result.statistic | |
0.14 | |
>>> result.proportion_ci() | |
ConfidenceInterval(low=0.05819170033997342, high=0.26739600249700846) | |
""" | |
if method not in ('exact', 'wilson', 'wilsoncc'): | |
raise ValueError(f"method ('{method}') must be one of 'exact', " | |
"'wilson' or 'wilsoncc'.") | |
if not (0 <= confidence_level <= 1): | |
raise ValueError(f'confidence_level ({confidence_level}) must be in ' | |
'the interval [0, 1].') | |
if method == 'exact': | |
low, high = _binom_exact_conf_int(self.k, self.n, | |
confidence_level, | |
self.alternative) | |
else: | |
# method is 'wilson' or 'wilsoncc' | |
low, high = _binom_wilson_conf_int(self.k, self.n, | |
confidence_level, | |
self.alternative, | |
correction=method == 'wilsoncc') | |
return ConfidenceInterval(low=low, high=high) | |
def _findp(func): | |
try: | |
p = brentq(func, 0, 1) | |
except RuntimeError: | |
raise RuntimeError('numerical solver failed to converge when ' | |
'computing the confidence limits') from None | |
except ValueError as exc: | |
raise ValueError('brentq raised a ValueError; report this to the ' | |
'SciPy developers') from exc | |
return p | |
def _binom_exact_conf_int(k, n, confidence_level, alternative): | |
""" | |
Compute the estimate and confidence interval for the binomial test. | |
Returns proportion, prop_low, prop_high | |
""" | |
if alternative == 'two-sided': | |
alpha = (1 - confidence_level) / 2 | |
if k == 0: | |
plow = 0.0 | |
else: | |
plow = _findp(lambda p: binom.sf(k-1, n, p) - alpha) | |
if k == n: | |
phigh = 1.0 | |
else: | |
phigh = _findp(lambda p: binom.cdf(k, n, p) - alpha) | |
elif alternative == 'less': | |
alpha = 1 - confidence_level | |
plow = 0.0 | |
if k == n: | |
phigh = 1.0 | |
else: | |
phigh = _findp(lambda p: binom.cdf(k, n, p) - alpha) | |
elif alternative == 'greater': | |
alpha = 1 - confidence_level | |
if k == 0: | |
plow = 0.0 | |
else: | |
plow = _findp(lambda p: binom.sf(k-1, n, p) - alpha) | |
phigh = 1.0 | |
return plow, phigh | |
def _binom_wilson_conf_int(k, n, confidence_level, alternative, correction): | |
# This function assumes that the arguments have already been validated. | |
# In particular, `alternative` must be one of 'two-sided', 'less' or | |
# 'greater'. | |
p = k / n | |
if alternative == 'two-sided': | |
z = ndtri(0.5 + 0.5*confidence_level) | |
else: | |
z = ndtri(confidence_level) | |
# For reference, the formulas implemented here are from | |
# Newcombe (1998) (ref. [3] in the proportion_ci docstring). | |
denom = 2*(n + z**2) | |
center = (2*n*p + z**2)/denom | |
q = 1 - p | |
if correction: | |
if alternative == 'less' or k == 0: | |
lo = 0.0 | |
else: | |
dlo = (1 + z*sqrt(z**2 - 2 - 1/n + 4*p*(n*q + 1))) / denom | |
lo = center - dlo | |
if alternative == 'greater' or k == n: | |
hi = 1.0 | |
else: | |
dhi = (1 + z*sqrt(z**2 + 2 - 1/n + 4*p*(n*q - 1))) / denom | |
hi = center + dhi | |
else: | |
delta = z/denom * sqrt(4*n*p*q + z**2) | |
if alternative == 'less' or k == 0: | |
lo = 0.0 | |
else: | |
lo = center - delta | |
if alternative == 'greater' or k == n: | |
hi = 1.0 | |
else: | |
hi = center + delta | |
return lo, hi | |
def binomtest(k, n, p=0.5, alternative='two-sided'): | |
""" | |
Perform a test that the probability of success is p. | |
The binomial test [1]_ is a test of the null hypothesis that the | |
probability of success in a Bernoulli experiment is `p`. | |
Details of the test can be found in many texts on statistics, such | |
as section 24.5 of [2]_. | |
Parameters | |
---------- | |
k : int | |
The number of successes. | |
n : int | |
The number of trials. | |
p : float, optional | |
The hypothesized probability of success, i.e. the expected | |
proportion of successes. The value must be in the interval | |
``0 <= p <= 1``. The default value is ``p = 0.5``. | |
alternative : {'two-sided', 'greater', 'less'}, optional | |
Indicates the alternative hypothesis. The default value is | |
'two-sided'. | |
Returns | |
------- | |
result : `~scipy.stats._result_classes.BinomTestResult` instance | |
The return value is an object with the following attributes: | |
k : int | |
The number of successes (copied from `binomtest` input). | |
n : int | |
The number of trials (copied from `binomtest` input). | |
alternative : str | |
Indicates the alternative hypothesis specified in the input | |
to `binomtest`. It will be one of ``'two-sided'``, ``'greater'``, | |
or ``'less'``. | |
statistic : float | |
The estimate of the proportion of successes. | |
pvalue : float | |
The p-value of the hypothesis test. | |
The object has the following methods: | |
proportion_ci(confidence_level=0.95, method='exact') : | |
Compute the confidence interval for ``statistic``. | |
Notes | |
----- | |
.. versionadded:: 1.7.0 | |
References | |
---------- | |
.. [1] Binomial test, https://en.wikipedia.org/wiki/Binomial_test | |
.. [2] Jerrold H. Zar, Biostatistical Analysis (fifth edition), | |
Prentice Hall, Upper Saddle River, New Jersey USA (2010) | |
Examples | |
-------- | |
>>> from scipy.stats import binomtest | |
A car manufacturer claims that no more than 10% of their cars are unsafe. | |
15 cars are inspected for safety, 3 were found to be unsafe. Test the | |
manufacturer's claim: | |
>>> result = binomtest(3, n=15, p=0.1, alternative='greater') | |
>>> result.pvalue | |
0.18406106910639114 | |
The null hypothesis cannot be rejected at the 5% level of significance | |
because the returned p-value is greater than the critical value of 5%. | |
The test statistic is equal to the estimated proportion, which is simply | |
``3/15``: | |
>>> result.statistic | |
0.2 | |
We can use the `proportion_ci()` method of the result to compute the | |
confidence interval of the estimate: | |
>>> result.proportion_ci(confidence_level=0.95) | |
ConfidenceInterval(low=0.05684686759024681, high=1.0) | |
""" | |
k = _validate_int(k, 'k', minimum=0) | |
n = _validate_int(n, 'n', minimum=1) | |
if k > n: | |
raise ValueError(f'k ({k}) must not be greater than n ({n}).') | |
if not (0 <= p <= 1): | |
raise ValueError(f"p ({p}) must be in range [0,1]") | |
if alternative not in ('two-sided', 'less', 'greater'): | |
raise ValueError(f"alternative ('{alternative}') not recognized; \n" | |
"must be 'two-sided', 'less' or 'greater'") | |
if alternative == 'less': | |
pval = binom.cdf(k, n, p) | |
elif alternative == 'greater': | |
pval = binom.sf(k-1, n, p) | |
else: | |
# alternative is 'two-sided' | |
d = binom.pmf(k, n, p) | |
rerr = 1 + 1e-7 | |
if k == p * n: | |
# special case as shortcut, would also be handled by `else` below | |
pval = 1. | |
elif k < p * n: | |
ix = _binary_search_for_binom_tst(lambda x1: -binom.pmf(x1, n, p), | |
-d*rerr, np.ceil(p * n), n) | |
# y is the number of terms between mode and n that are <= d*rerr. | |
# ix gave us the first term where a(ix) <= d*rerr < a(ix-1) | |
# if the first equality doesn't hold, y=n-ix. Otherwise, we | |
# need to include ix as well as the equality holds. Note that | |
# the equality will hold in very very rare situations due to rerr. | |
y = n - ix + int(d*rerr == binom.pmf(ix, n, p)) | |
pval = binom.cdf(k, n, p) + binom.sf(n - y, n, p) | |
else: | |
ix = _binary_search_for_binom_tst(lambda x1: binom.pmf(x1, n, p), | |
d*rerr, 0, np.floor(p * n)) | |
# y is the number of terms between 0 and mode that are <= d*rerr. | |
# we need to add a 1 to account for the 0 index. | |
# For comparing this with old behavior, see | |
# tst_binary_srch_for_binom_tst method in test_morestats. | |
y = ix + 1 | |
pval = binom.cdf(y-1, n, p) + binom.sf(k-1, n, p) | |
pval = min(1.0, pval) | |
result = BinomTestResult(k=k, n=n, alternative=alternative, | |
statistic=k/n, pvalue=pval) | |
return result | |
def _binary_search_for_binom_tst(a, d, lo, hi): | |
""" | |
Conducts an implicit binary search on a function specified by `a`. | |
Meant to be used on the binomial PMF for the case of two-sided tests | |
to obtain the value on the other side of the mode where the tail | |
probability should be computed. The values on either side of | |
the mode are always in order, meaning binary search is applicable. | |
Parameters | |
---------- | |
a : callable | |
The function over which to perform binary search. Its values | |
for inputs lo and hi should be in ascending order. | |
d : float | |
The value to search. | |
lo : int | |
The lower end of range to search. | |
hi : int | |
The higher end of the range to search. | |
Returns | |
------- | |
int | |
The index, i between lo and hi | |
such that a(i)<=d<a(i+1) | |
""" | |
while lo < hi: | |
mid = lo + (hi-lo)//2 | |
midval = a(mid) | |
if midval < d: | |
lo = mid+1 | |
elif midval > d: | |
hi = mid-1 | |
else: | |
return mid | |
if a(lo) <= d: | |
return lo | |
else: | |
return lo-1 | |