peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/stats
/_sampling.py
import math | |
import numbers | |
import numpy as np | |
from scipy import stats | |
from scipy import special as sc | |
from ._qmc import (check_random_state as check_random_state_qmc, | |
Halton, QMCEngine) | |
from ._unuran.unuran_wrapper import NumericalInversePolynomial | |
from scipy._lib._util import check_random_state | |
__all__ = ['FastGeneratorInversion', 'RatioUniforms'] | |
# define pdfs and other helper functions to create the generators | |
def argus_pdf(x, chi): | |
# approach follows Baumgarten/Hoermann: Generating ARGUS random variates | |
# for chi > 5, use relationship of the ARGUS distribution to Gamma(1.5) | |
if chi <= 5: | |
y = 1 - x * x | |
return x * math.sqrt(y) * math.exp(-0.5 * chi**2 * y) | |
return math.sqrt(x) * math.exp(-x) | |
def argus_gamma_trf(x, chi): | |
if chi <= 5: | |
return x | |
return np.sqrt(1.0 - 2 * x / chi**2) | |
def argus_gamma_inv_trf(x, chi): | |
if chi <= 5: | |
return x | |
return 0.5 * chi**2 * (1 - x**2) | |
def betaprime_pdf(x, a, b): | |
if x > 0: | |
logf = (a - 1) * math.log(x) - (a + b) * math.log1p(x) - sc.betaln(a, b) | |
return math.exp(logf) | |
else: | |
# return pdf at x == 0 separately to avoid runtime warnings | |
if a > 1: | |
return 0 | |
elif a < 1: | |
return np.inf | |
else: | |
return 1 / sc.beta(a, b) | |
def beta_valid_params(a, b): | |
return (min(a, b) >= 0.1) and (max(a, b) <= 700) | |
def gamma_pdf(x, a): | |
if x > 0: | |
return math.exp(-math.lgamma(a) + (a - 1.0) * math.log(x) - x) | |
else: | |
return 0 if a >= 1 else np.inf | |
def invgamma_pdf(x, a): | |
if x > 0: | |
return math.exp(-(a + 1.0) * math.log(x) - math.lgamma(a) - 1 / x) | |
else: | |
return 0 if a >= 1 else np.inf | |
def burr_pdf(x, cc, dd): | |
# note: we use np.exp instead of math.exp, otherwise an overflow | |
# error can occur in the setup, e.g., for parameters | |
# 1.89128135, 0.30195177, see test test_burr_overflow | |
if x > 0: | |
lx = math.log(x) | |
return np.exp(-(cc + 1) * lx - (dd + 1) * math.log1p(np.exp(-cc * lx))) | |
else: | |
return 0 | |
def burr12_pdf(x, cc, dd): | |
if x > 0: | |
lx = math.log(x) | |
logterm = math.log1p(math.exp(cc * lx)) | |
return math.exp((cc - 1) * lx - (dd + 1) * logterm + math.log(cc * dd)) | |
else: | |
return 0 | |
def chi_pdf(x, a): | |
if x > 0: | |
return math.exp( | |
(a - 1) * math.log(x) | |
- 0.5 * (x * x) | |
- (a / 2 - 1) * math.log(2) | |
- math.lgamma(0.5 * a) | |
) | |
else: | |
return 0 if a >= 1 else np.inf | |
def chi2_pdf(x, df): | |
if x > 0: | |
return math.exp( | |
(df / 2 - 1) * math.log(x) | |
- 0.5 * x | |
- (df / 2) * math.log(2) | |
- math.lgamma(0.5 * df) | |
) | |
else: | |
return 0 if df >= 1 else np.inf | |
def alpha_pdf(x, a): | |
if x > 0: | |
return math.exp(-2.0 * math.log(x) - 0.5 * (a - 1.0 / x) ** 2) | |
return 0.0 | |
def bradford_pdf(x, c): | |
if 0 <= x <= 1: | |
return 1.0 / (1.0 + c * x) | |
return 0.0 | |
def crystalball_pdf(x, b, m): | |
if x > -b: | |
return math.exp(-0.5 * x * x) | |
return math.exp(m * math.log(m / b) - 0.5 * b * b - m * math.log(m / b - b - x)) | |
def weibull_min_pdf(x, c): | |
if x > 0: | |
return c * math.exp((c - 1) * math.log(x) - x**c) | |
return 0.0 | |
def weibull_max_pdf(x, c): | |
if x < 0: | |
return c * math.exp((c - 1) * math.log(-x) - ((-x) ** c)) | |
return 0.0 | |
def invweibull_pdf(x, c): | |
if x > 0: | |
return c * math.exp(-(c + 1) * math.log(x) - x ** (-c)) | |
return 0.0 | |
def wald_pdf(x): | |
if x > 0: | |
return math.exp(-((x - 1) ** 2) / (2 * x)) / math.sqrt(x**3) | |
return 0.0 | |
def geninvgauss_mode(p, b): | |
if p > 1: # equivalent mode formulas numerical more stable versions | |
return (math.sqrt((1 - p) ** 2 + b**2) - (1 - p)) / b | |
return b / (math.sqrt((1 - p) ** 2 + b**2) + (1 - p)) | |
def geninvgauss_pdf(x, p, b): | |
m = geninvgauss_mode(p, b) | |
lfm = (p - 1) * math.log(m) - 0.5 * b * (m + 1 / m) | |
if x > 0: | |
return math.exp((p - 1) * math.log(x) - 0.5 * b * (x + 1 / x) - lfm) | |
return 0.0 | |
def invgauss_mode(mu): | |
return 1.0 / (math.sqrt(1.5 * 1.5 + 1 / (mu * mu)) + 1.5) | |
def invgauss_pdf(x, mu): | |
m = invgauss_mode(mu) | |
lfm = -1.5 * math.log(m) - (m - mu) ** 2 / (2 * m * mu**2) | |
if x > 0: | |
return math.exp(-1.5 * math.log(x) - (x - mu) ** 2 / (2 * x * mu**2) - lfm) | |
return 0.0 | |
def powerlaw_pdf(x, a): | |
if x > 0: | |
return x ** (a - 1) | |
return 0.0 | |
# Define a dictionary: for a given distribution (keys), another dictionary | |
# (values) specifies the parameters for NumericalInversePolynomial (PINV). | |
# The keys of the latter dictionary are: | |
# - pdf: the pdf of the distribution (callable). The signature of the pdf | |
# is float -> float (i.e., the function does not have to be vectorized). | |
# If possible, functions like log or exp from the module math should be | |
# preferred over functions from numpy since the PINV setup will be faster | |
# in that case. | |
# - check_pinv_params: callable f that returns true if the shape parameters | |
# (args) are recommended parameters for PINV (i.e., the u-error does | |
# not exceed the default tolerance) | |
# - center: scalar if the center does not depend on args, otherwise | |
# callable that returns the center as a function of the shape parameters | |
# - rvs_transform: a callable that can be used to transform the rvs that | |
# are distributed according to the pdf to the target distribution | |
# (as an example, see the entry for the beta distribution) | |
# - rvs_transform_inv: the inverse of rvs_transform (it is required | |
# for the transformed ppf) | |
# - mirror_uniform: boolean or a callable that returns true or false | |
# depending on the shape parameters. If True, the ppf is applied | |
# to 1-u instead of u to generate rvs, where u is a uniform rv. | |
# While both u and 1-u are uniform, it can be required to use 1-u | |
# to compute the u-error correctly. This is only relevant for the argus | |
# distribution. | |
# The only required keys are "pdf" and "check_pinv_params". | |
# All other keys are optional. | |
PINV_CONFIG = { | |
"alpha": { | |
"pdf": alpha_pdf, | |
"check_pinv_params": lambda a: 1.0e-11 <= a < 2.1e5, | |
"center": lambda a: 0.25 * (math.sqrt(a * a + 8.0) - a), | |
}, | |
"anglit": { | |
"pdf": lambda x: math.cos(2 * x) + 1.0e-13, | |
# +1.e-13 is necessary, otherwise PINV has strange problems as | |
# f(upper border) is very close to 0 | |
"center": 0, | |
}, | |
"argus": { | |
"pdf": argus_pdf, | |
"center": lambda chi: 0.7 if chi <= 5 else 0.5, | |
"check_pinv_params": lambda chi: 1e-20 < chi < 901, | |
"rvs_transform": argus_gamma_trf, | |
"rvs_transform_inv": argus_gamma_inv_trf, | |
"mirror_uniform": lambda chi: chi > 5, | |
}, | |
"beta": { | |
"pdf": betaprime_pdf, | |
"center": lambda a, b: max(0.1, (a - 1) / (b + 1)), | |
"check_pinv_params": beta_valid_params, | |
"rvs_transform": lambda x, *args: x / (1 + x), | |
"rvs_transform_inv": lambda x, *args: x / (1 - x) if x < 1 else np.inf, | |
}, | |
"betaprime": { | |
"pdf": betaprime_pdf, | |
"center": lambda a, b: max(0.1, (a - 1) / (b + 1)), | |
"check_pinv_params": beta_valid_params, | |
}, | |
"bradford": { | |
"pdf": bradford_pdf, | |
"check_pinv_params": lambda a: 1.0e-6 <= a <= 1e9, | |
"center": 0.5, | |
}, | |
"burr": { | |
"pdf": burr_pdf, | |
"center": lambda a, b: (2 ** (1 / b) - 1) ** (-1 / a), | |
"check_pinv_params": lambda a, b: (min(a, b) >= 0.3) and (max(a, b) <= 50), | |
}, | |
"burr12": { | |
"pdf": burr12_pdf, | |
"center": lambda a, b: (2 ** (1 / b) - 1) ** (1 / a), | |
"check_pinv_params": lambda a, b: (min(a, b) >= 0.2) and (max(a, b) <= 50), | |
}, | |
"cauchy": { | |
"pdf": lambda x: 1 / (1 + (x * x)), | |
"center": 0, | |
}, | |
"chi": { | |
"pdf": chi_pdf, | |
"check_pinv_params": lambda df: 0.05 <= df <= 1.0e6, | |
"center": lambda a: math.sqrt(a), | |
}, | |
"chi2": { | |
"pdf": chi2_pdf, | |
"check_pinv_params": lambda df: 0.07 <= df <= 1e6, | |
"center": lambda a: a, | |
}, | |
"cosine": { | |
"pdf": lambda x: 1 + math.cos(x), | |
"center": 0, | |
}, | |
"crystalball": { | |
"pdf": crystalball_pdf, | |
"check_pinv_params": lambda b, m: (0.01 <= b <= 5.5) | |
and (1.1 <= m <= 75.1), | |
"center": 0.0, | |
}, | |
"expon": { | |
"pdf": lambda x: math.exp(-x), | |
"center": 1.0, | |
}, | |
"gamma": { | |
"pdf": gamma_pdf, | |
"check_pinv_params": lambda a: 0.04 <= a <= 1e6, | |
"center": lambda a: a, | |
}, | |
"gennorm": { | |
"pdf": lambda x, b: math.exp(-abs(x) ** b), | |
"check_pinv_params": lambda b: 0.081 <= b <= 45.0, | |
"center": 0.0, | |
}, | |
"geninvgauss": { | |
"pdf": geninvgauss_pdf, | |
"check_pinv_params": lambda p, b: (abs(p) <= 1200.0) | |
and (1.0e-10 <= b <= 1200.0), | |
"center": geninvgauss_mode, | |
}, | |
"gumbel_l": { | |
"pdf": lambda x: math.exp(x - math.exp(x)), | |
"center": -0.6, | |
}, | |
"gumbel_r": { | |
"pdf": lambda x: math.exp(-x - math.exp(-x)), | |
"center": 0.6, | |
}, | |
"hypsecant": { | |
"pdf": lambda x: 1.0 / (math.exp(x) + math.exp(-x)), | |
"center": 0.0, | |
}, | |
"invgamma": { | |
"pdf": invgamma_pdf, | |
"check_pinv_params": lambda a: 0.04 <= a <= 1e6, | |
"center": lambda a: 1 / a, | |
}, | |
"invgauss": { | |
"pdf": invgauss_pdf, | |
"check_pinv_params": lambda mu: 1.0e-10 <= mu <= 1.0e9, | |
"center": invgauss_mode, | |
}, | |
"invweibull": { | |
"pdf": invweibull_pdf, | |
"check_pinv_params": lambda a: 0.12 <= a <= 512, | |
"center": 1.0, | |
}, | |
"laplace": { | |
"pdf": lambda x: math.exp(-abs(x)), | |
"center": 0.0, | |
}, | |
"logistic": { | |
"pdf": lambda x: math.exp(-x) / (1 + math.exp(-x)) ** 2, | |
"center": 0.0, | |
}, | |
"maxwell": { | |
"pdf": lambda x: x * x * math.exp(-0.5 * x * x), | |
"center": 1.41421, | |
}, | |
"moyal": { | |
"pdf": lambda x: math.exp(-(x + math.exp(-x)) / 2), | |
"center": 1.2, | |
}, | |
"norm": { | |
"pdf": lambda x: math.exp(-x * x / 2), | |
"center": 0.0, | |
}, | |
"pareto": { | |
"pdf": lambda x, b: x ** -(b + 1), | |
"center": lambda b: b / (b - 1) if b > 2 else 1.5, | |
"check_pinv_params": lambda b: 0.08 <= b <= 400000, | |
}, | |
"powerlaw": { | |
"pdf": powerlaw_pdf, | |
"center": 1.0, | |
"check_pinv_params": lambda a: 0.06 <= a <= 1.0e5, | |
}, | |
"t": { | |
"pdf": lambda x, df: (1 + x * x / df) ** (-0.5 * (df + 1)), | |
"check_pinv_params": lambda a: 0.07 <= a <= 1e6, | |
"center": 0.0, | |
}, | |
"rayleigh": { | |
"pdf": lambda x: x * math.exp(-0.5 * (x * x)), | |
"center": 1.0, | |
}, | |
"semicircular": { | |
"pdf": lambda x: math.sqrt(1.0 - (x * x)), | |
"center": 0, | |
}, | |
"wald": { | |
"pdf": wald_pdf, | |
"center": 1.0, | |
}, | |
"weibull_max": { | |
"pdf": weibull_max_pdf, | |
"check_pinv_params": lambda a: 0.25 <= a <= 512, | |
"center": -1.0, | |
}, | |
"weibull_min": { | |
"pdf": weibull_min_pdf, | |
"check_pinv_params": lambda a: 0.25 <= a <= 512, | |
"center": 1.0, | |
}, | |
} | |
def _validate_qmc_input(qmc_engine, d, seed): | |
# Input validation for `qmc_engine` and `d` | |
# Error messages for invalid `d` are raised by QMCEngine | |
# we could probably use a stats.qmc.check_qrandom_state | |
if isinstance(qmc_engine, QMCEngine): | |
if d is not None and qmc_engine.d != d: | |
message = "`d` must be consistent with dimension of `qmc_engine`." | |
raise ValueError(message) | |
d = qmc_engine.d if d is None else d | |
elif qmc_engine is None: | |
d = 1 if d is None else d | |
qmc_engine = Halton(d, seed=seed) | |
else: | |
message = ( | |
"`qmc_engine` must be an instance of " | |
"`scipy.stats.qmc.QMCEngine` or `None`." | |
) | |
raise ValueError(message) | |
return qmc_engine, d | |
class CustomDistPINV: | |
def __init__(self, pdf, args): | |
self._pdf = lambda x: pdf(x, *args) | |
def pdf(self, x): | |
return self._pdf(x) | |
class FastGeneratorInversion: | |
""" | |
Fast sampling by numerical inversion of the CDF for a large class of | |
continuous distributions in `scipy.stats`. | |
Parameters | |
---------- | |
dist : rv_frozen object | |
Frozen distribution object from `scipy.stats`. The list of supported | |
distributions can be found in the Notes section. The shape parameters, | |
`loc` and `scale` used to create the distributions must be scalars. | |
For example, for the Gamma distribution with shape parameter `p`, | |
`p` has to be a float, and for the beta distribution with shape | |
parameters (a, b), both a and b have to be floats. | |
domain : tuple of floats, optional | |
If one wishes to sample from a truncated/conditional distribution, | |
the domain has to be specified. | |
The default is None. In that case, the random variates are not | |
truncated, and the domain is inferred from the support of the | |
distribution. | |
ignore_shape_range : boolean, optional. | |
If False, shape parameters that are outside of the valid range | |
of values to ensure that the numerical accuracy (see Notes) is | |
high, raise a ValueError. If True, any shape parameters that are valid | |
for the distribution are accepted. This can be useful for testing. | |
The default is False. | |
random_state : {None, int, `numpy.random.Generator`, | |
`numpy.random.RandomState`}, optional | |
A NumPy random number generator or seed for the underlying NumPy | |
random number generator used to generate the stream of uniform | |
random numbers. | |
If `random_state` is None, it uses ``self.random_state``. | |
If `random_state` is an int, | |
``np.random.default_rng(random_state)`` is used. | |
If `random_state` is already a ``Generator`` or ``RandomState`` | |
instance then that instance is used. | |
Attributes | |
---------- | |
loc : float | |
The location parameter. | |
random_state : {`numpy.random.Generator`, `numpy.random.RandomState`} | |
The random state used in relevant methods like `rvs` (unless | |
another `random_state` is passed as an argument to these methods). | |
scale : float | |
The scale parameter. | |
Methods | |
------- | |
cdf | |
evaluate_error | |
ppf | |
qrvs | |
rvs | |
support | |
Notes | |
----- | |
The class creates an object for continuous distributions specified | |
by `dist`. The method `rvs` uses a generator from | |
`scipy.stats.sampling` that is created when the object is instantiated. | |
In addition, the methods `qrvs` and `ppf` are added. | |
`qrvs` generate samples based on quasi-random numbers from | |
`scipy.stats.qmc`. `ppf` is the PPF based on the | |
numerical inversion method in [1]_ (`NumericalInversePolynomial`) that is | |
used to generate random variates. | |
Supported distributions (`distname`) are: | |
``alpha``, ``anglit``, ``argus``, ``beta``, ``betaprime``, ``bradford``, | |
``burr``, ``burr12``, ``cauchy``, ``chi``, ``chi2``, ``cosine``, | |
``crystalball``, ``expon``, ``gamma``, ``gennorm``, ``geninvgauss``, | |
``gumbel_l``, ``gumbel_r``, ``hypsecant``, ``invgamma``, ``invgauss``, | |
``invweibull``, ``laplace``, ``logistic``, ``maxwell``, ``moyal``, | |
``norm``, ``pareto``, ``powerlaw``, ``t``, ``rayleigh``, ``semicircular``, | |
``wald``, ``weibull_max``, ``weibull_min``. | |
`rvs` relies on the accuracy of the numerical inversion. If very extreme | |
shape parameters are used, the numerical inversion might not work. However, | |
for all implemented distributions, the admissible shape parameters have | |
been tested, and an error will be raised if the user supplies values | |
outside of the allowed range. The u-error should not exceed 1e-10 for all | |
valid parameters. Note that warnings might be raised even if parameters | |
are within the valid range when the object is instantiated. | |
To check numerical accuracy, the method `evaluate_error` can be used. | |
Note that all implemented distributions are also part of `scipy.stats`, and | |
the object created by `FastGeneratorInversion` relies on methods like | |
`ppf`, `cdf` and `pdf` from `rv_frozen`. The main benefit of using this | |
class can be summarized as follows: Once the generator to sample random | |
variates is created in the setup step, sampling and evaluation of | |
the PPF using `ppf` are very fast, | |
and performance is essentially independent of the distribution. Therefore, | |
a substantial speed-up can be achieved for many distributions if large | |
numbers of random variates are required. It is important to know that this | |
fast sampling is achieved by inversion of the CDF. Thus, one uniform | |
random variate is transformed into a non-uniform variate, which is an | |
advantage for several simulation methods, e.g., when | |
the variance reduction methods of common random variates or | |
antithetic variates are be used ([2]_). | |
In addition, inversion makes it possible to | |
- to use a QMC generator from `scipy.stats.qmc` (method `qrvs`), | |
- to generate random variates truncated to an interval. For example, if | |
one aims to sample standard normal random variates from | |
the interval (2, 4), this can be easily achieved by using the parameter | |
`domain`. | |
The location and scale that are initially defined by `dist` | |
can be reset without having to rerun the setup | |
step to create the generator that is used for sampling. The relation | |
of the distribution `Y` with `loc` and `scale` to the standard | |
distribution `X` (i.e., ``loc=0`` and ``scale=1``) is given by | |
``Y = loc + scale * X``. | |
References | |
---------- | |
.. [1] Derflinger, Gerhard, Wolfgang Hörmann, and Josef Leydold. | |
"Random variate generation by numerical inversion when only the | |
density is known." ACM Transactions on Modeling and Computer | |
Simulation (TOMACS) 20.4 (2010): 1-25. | |
.. [2] Hörmann, Wolfgang, Josef Leydold and Gerhard Derflinger. | |
"Automatic nonuniform random number generation." | |
Springer, 2004. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy import stats | |
>>> from scipy.stats.sampling import FastGeneratorInversion | |
Let's start with a simple example to illustrate the main features: | |
>>> gamma_frozen = stats.gamma(1.5) | |
>>> gamma_dist = FastGeneratorInversion(gamma_frozen) | |
>>> r = gamma_dist.rvs(size=1000) | |
The mean should be approximately equal to the shape parameter 1.5: | |
>>> r.mean() | |
1.52423591130436 # may vary | |
Similarly, we can draw a sample based on quasi-random numbers: | |
>>> r = gamma_dist.qrvs(size=1000) | |
>>> r.mean() | |
1.4996639255942914 # may vary | |
Compare the PPF against approximation `ppf`. | |
>>> q = [0.001, 0.2, 0.5, 0.8, 0.999] | |
>>> np.max(np.abs(gamma_frozen.ppf(q) - gamma_dist.ppf(q))) | |
4.313394796895409e-08 | |
To confirm that the numerical inversion is accurate, we evaluate the | |
approximation error (u-error), which should be below 1e-10 (for more | |
details, refer to the documentation of `evaluate_error`): | |
>>> gamma_dist.evaluate_error() | |
(7.446320551265581e-11, nan) # may vary | |
Note that the location and scale can be changed without instantiating a | |
new generator: | |
>>> gamma_dist.loc = 2 | |
>>> gamma_dist.scale = 3 | |
>>> r = gamma_dist.rvs(size=1000) | |
The mean should be approximately 2 + 3*1.5 = 6.5. | |
>>> r.mean() | |
6.399549295242894 # may vary | |
Let us also illustrate how truncation can be applied: | |
>>> trunc_norm = FastGeneratorInversion(stats.norm(), domain=(3, 4)) | |
>>> r = trunc_norm.rvs(size=1000) | |
>>> 3 < r.min() < r.max() < 4 | |
True | |
Check the mean: | |
>>> r.mean() | |
3.250433367078603 # may vary | |
>>> stats.norm.expect(lb=3, ub=4, conditional=True) | |
3.260454285589997 | |
In this particular, case, `scipy.stats.truncnorm` could also be used to | |
generate truncated normal random variates. | |
""" | |
def __init__( | |
self, | |
dist, | |
*, | |
domain=None, | |
ignore_shape_range=False, | |
random_state=None, | |
): | |
if isinstance(dist, stats.distributions.rv_frozen): | |
distname = dist.dist.name | |
if distname not in PINV_CONFIG.keys(): | |
raise ValueError( | |
f"Distribution '{distname}' is not supported." | |
f"It must be one of {list(PINV_CONFIG.keys())}" | |
) | |
else: | |
raise ValueError("`dist` must be a frozen distribution object") | |
loc = dist.kwds.get("loc", 0) | |
scale = dist.kwds.get("scale", 1) | |
args = dist.args | |
if not np.isscalar(loc): | |
raise ValueError("loc must be scalar.") | |
if not np.isscalar(scale): | |
raise ValueError("scale must be scalar.") | |
self._frozendist = getattr(stats, distname)( | |
*args, | |
loc=loc, | |
scale=scale, | |
) | |
self._distname = distname | |
nargs = np.broadcast_arrays(args)[0].size | |
nargs_expected = self._frozendist.dist.numargs | |
if nargs != nargs_expected: | |
raise ValueError( | |
f"Each of the {nargs_expected} shape parameters must be a " | |
f"scalar, but {nargs} values are provided." | |
) | |
self.random_state = random_state | |
if domain is None: | |
self._domain = self._frozendist.support() | |
self._p_lower = 0.0 | |
self._p_domain = 1.0 | |
else: | |
self._domain = domain | |
self._p_lower = self._frozendist.cdf(self._domain[0]) | |
_p_domain = self._frozendist.cdf(self._domain[1]) - self._p_lower | |
self._p_domain = _p_domain | |
self._set_domain_adj() | |
self._ignore_shape_range = ignore_shape_range | |
# the domain to be passed to NumericalInversePolynomial | |
# define a separate variable since in case of a transformation, | |
# domain_pinv will not be the same as self._domain | |
self._domain_pinv = self._domain | |
# get information about the distribution from the config to set up | |
# the generator | |
dist = self._process_config(distname, args) | |
if self._rvs_transform_inv is not None: | |
d0 = self._rvs_transform_inv(self._domain[0], *args) | |
d1 = self._rvs_transform_inv(self._domain[1], *args) | |
if d0 > d1: | |
# swap values if transformation if decreasing | |
d0, d1 = d1, d0 | |
# only update _domain_pinv and not _domain | |
# _domain refers to the original distribution, _domain_pinv | |
# to the transformed distribution | |
self._domain_pinv = d0, d1 | |
# self._center has been set by the call self._process_config | |
# check if self._center is inside the transformed domain | |
# _domain_pinv, otherwise move it to the endpoint that is closer | |
if self._center is not None: | |
if self._center < self._domain_pinv[0]: | |
self._center = self._domain_pinv[0] | |
elif self._center > self._domain_pinv[1]: | |
self._center = self._domain_pinv[1] | |
self._rng = NumericalInversePolynomial( | |
dist, | |
random_state=self.random_state, | |
domain=self._domain_pinv, | |
center=self._center, | |
) | |
def random_state(self): | |
return self._random_state | |
def random_state(self, random_state): | |
self._random_state = check_random_state_qmc(random_state) | |
def loc(self): | |
return self._frozendist.kwds.get("loc", 0) | |
def loc(self, loc): | |
if not np.isscalar(loc): | |
raise ValueError("loc must be scalar.") | |
self._frozendist.kwds["loc"] = loc | |
# update the adjusted domain that depends on loc and scale | |
self._set_domain_adj() | |
def scale(self): | |
return self._frozendist.kwds.get("scale", 0) | |
def scale(self, scale): | |
if not np.isscalar(scale): | |
raise ValueError("scale must be scalar.") | |
self._frozendist.kwds["scale"] = scale | |
# update the adjusted domain that depends on loc and scale | |
self._set_domain_adj() | |
def _set_domain_adj(self): | |
""" Adjust the domain based on loc and scale. """ | |
loc = self.loc | |
scale = self.scale | |
lb = self._domain[0] * scale + loc | |
ub = self._domain[1] * scale + loc | |
self._domain_adj = (lb, ub) | |
def _process_config(self, distname, args): | |
cfg = PINV_CONFIG[distname] | |
if "check_pinv_params" in cfg: | |
if not self._ignore_shape_range: | |
if not cfg["check_pinv_params"](*args): | |
msg = ("No generator is defined for the shape parameters " | |
f"{args}. Use ignore_shape_range to proceed " | |
"with the selected values.") | |
raise ValueError(msg) | |
if "center" in cfg.keys(): | |
if not np.isscalar(cfg["center"]): | |
self._center = cfg["center"](*args) | |
else: | |
self._center = cfg["center"] | |
else: | |
self._center = None | |
self._rvs_transform = cfg.get("rvs_transform", None) | |
self._rvs_transform_inv = cfg.get("rvs_transform_inv", None) | |
_mirror_uniform = cfg.get("mirror_uniform", None) | |
if _mirror_uniform is None: | |
self._mirror_uniform = False | |
else: | |
self._mirror_uniform = _mirror_uniform(*args) | |
return CustomDistPINV(cfg["pdf"], args) | |
def rvs(self, size=None): | |
""" | |
Sample from the distribution by inversion. | |
Parameters | |
---------- | |
size : int or tuple, optional | |
The shape of samples. Default is ``None`` in which case a scalar | |
sample is returned. | |
Returns | |
------- | |
rvs : array_like | |
A NumPy array of random variates. | |
Notes | |
----- | |
Random variates are generated by numerical inversion of the CDF, i.e., | |
`ppf` computed by `NumericalInversePolynomial` when the class | |
is instantiated. Note that the | |
default ``rvs`` method of the rv_continuous class is | |
overwritten. Hence, a different stream of random numbers is generated | |
even if the same seed is used. | |
""" | |
# note: we cannot use self._rng.rvs directly in case | |
# self._mirror_uniform is true | |
u = self.random_state.uniform(size=size) | |
if self._mirror_uniform: | |
u = 1 - u | |
r = self._rng.ppf(u) | |
if self._rvs_transform is not None: | |
r = self._rvs_transform(r, *self._frozendist.args) | |
return self.loc + self.scale * r | |
def ppf(self, q): | |
""" | |
Very fast PPF (inverse CDF) of the distribution which | |
is a very close approximation of the exact PPF values. | |
Parameters | |
---------- | |
u : array_like | |
Array with probabilities. | |
Returns | |
------- | |
ppf : array_like | |
Quantiles corresponding to the values in `u`. | |
Notes | |
----- | |
The evaluation of the PPF is very fast but it may have a large | |
relative error in the far tails. The numerical precision of the PPF | |
is controlled by the u-error, that is, | |
``max |u - CDF(PPF(u))|`` where the max is taken over points in | |
the interval [0,1], see `evaluate_error`. | |
Note that this PPF is designed to generate random samples. | |
""" | |
q = np.asarray(q) | |
if self._mirror_uniform: | |
x = self._rng.ppf(1 - q) | |
else: | |
x = self._rng.ppf(q) | |
if self._rvs_transform is not None: | |
x = self._rvs_transform(x, *self._frozendist.args) | |
return self.scale * x + self.loc | |
def qrvs(self, size=None, d=None, qmc_engine=None): | |
""" | |
Quasi-random variates of the given distribution. | |
The `qmc_engine` is used to draw uniform quasi-random variates, and | |
these are converted to quasi-random variates of the given distribution | |
using inverse transform sampling. | |
Parameters | |
---------- | |
size : int, tuple of ints, or None; optional | |
Defines shape of random variates array. Default is ``None``. | |
d : int or None, optional | |
Defines dimension of uniform quasi-random variates to be | |
transformed. Default is ``None``. | |
qmc_engine : scipy.stats.qmc.QMCEngine(d=1), optional | |
Defines the object to use for drawing | |
quasi-random variates. Default is ``None``, which uses | |
`scipy.stats.qmc.Halton(1)`. | |
Returns | |
------- | |
rvs : ndarray or scalar | |
Quasi-random variates. See Notes for shape information. | |
Notes | |
----- | |
The shape of the output array depends on `size`, `d`, and `qmc_engine`. | |
The intent is for the interface to be natural, but the detailed rules | |
to achieve this are complicated. | |
- If `qmc_engine` is ``None``, a `scipy.stats.qmc.Halton` instance is | |
created with dimension `d`. If `d` is not provided, ``d=1``. | |
- If `qmc_engine` is not ``None`` and `d` is ``None``, `d` is | |
determined from the dimension of the `qmc_engine`. | |
- If `qmc_engine` is not ``None`` and `d` is not ``None`` but the | |
dimensions are inconsistent, a ``ValueError`` is raised. | |
- After `d` is determined according to the rules above, the output | |
shape is ``tuple_shape + d_shape``, where: | |
- ``tuple_shape = tuple()`` if `size` is ``None``, | |
- ``tuple_shape = (size,)`` if `size` is an ``int``, | |
- ``tuple_shape = size`` if `size` is a sequence, | |
- ``d_shape = tuple()`` if `d` is ``None`` or `d` is 1, and | |
- ``d_shape = (d,)`` if `d` is greater than 1. | |
The elements of the returned array are part of a low-discrepancy | |
sequence. If `d` is 1, this means that none of the samples are truly | |
independent. If `d` > 1, each slice ``rvs[..., i]`` will be of a | |
quasi-independent sequence; see `scipy.stats.qmc.QMCEngine` for | |
details. Note that when `d` > 1, the samples returned are still those | |
of the provided univariate distribution, not a multivariate | |
generalization of that distribution. | |
""" | |
qmc_engine, d = _validate_qmc_input(qmc_engine, d, self.random_state) | |
# mainly copied from unuran_wrapper.pyx.templ | |
# `rvs` is flexible about whether `size` is an int or tuple, so this | |
# should be, too. | |
try: | |
if size is None: | |
tuple_size = (1,) | |
else: | |
tuple_size = tuple(size) | |
except TypeError: | |
tuple_size = (size,) | |
# we do not use rng.qrvs directly since we need to be | |
# able to apply the ppf to 1 - u | |
N = 1 if size is None else np.prod(size) | |
u = qmc_engine.random(N) | |
if self._mirror_uniform: | |
u = 1 - u | |
qrvs = self._ppf(u) | |
if self._rvs_transform is not None: | |
qrvs = self._rvs_transform(qrvs, *self._frozendist.args) | |
if size is None: | |
qrvs = qrvs.squeeze()[()] | |
else: | |
if d == 1: | |
qrvs = qrvs.reshape(tuple_size) | |
else: | |
qrvs = qrvs.reshape(tuple_size + (d,)) | |
return self.loc + self.scale * qrvs | |
def evaluate_error(self, size=100000, random_state=None, x_error=False): | |
""" | |
Evaluate the numerical accuracy of the inversion (u- and x-error). | |
Parameters | |
---------- | |
size : int, optional | |
The number of random points over which the error is estimated. | |
Default is ``100000``. | |
random_state : {None, int, `numpy.random.Generator`, | |
`numpy.random.RandomState`}, optional | |
A NumPy random number generator or seed for the underlying NumPy | |
random number generator used to generate the stream of uniform | |
random numbers. | |
If `random_state` is None, use ``self.random_state``. | |
If `random_state` is an int, | |
``np.random.default_rng(random_state)`` is used. | |
If `random_state` is already a ``Generator`` or ``RandomState`` | |
instance then that instance is used. | |
Returns | |
------- | |
u_error, x_error : tuple of floats | |
A NumPy array of random variates. | |
Notes | |
----- | |
The numerical precision of the inverse CDF `ppf` is controlled by | |
the u-error. It is computed as follows: | |
``max |u - CDF(PPF(u))|`` where the max is taken `size` random | |
points in the interval [0,1]. `random_state` determines the random | |
sample. Note that if `ppf` was exact, the u-error would be zero. | |
The x-error measures the direct distance between the exact PPF | |
and `ppf`. If ``x_error`` is set to ``True`, it is | |
computed as the maximum of the minimum of the relative and absolute | |
x-error: | |
``max(min(x_error_abs[i], x_error_rel[i]))`` where | |
``x_error_abs[i] = |PPF(u[i]) - PPF_fast(u[i])|``, | |
``x_error_rel[i] = max |(PPF(u[i]) - PPF_fast(u[i])) / PPF(u[i])|``. | |
Note that it is important to consider the relative x-error in the case | |
that ``PPF(u)`` is close to zero or very large. | |
By default, only the u-error is evaluated and the x-error is set to | |
``np.nan``. Note that the evaluation of the x-error will be very slow | |
if the implementation of the PPF is slow. | |
Further information about these error measures can be found in [1]_. | |
References | |
---------- | |
.. [1] Derflinger, Gerhard, Wolfgang Hörmann, and Josef Leydold. | |
"Random variate generation by numerical inversion when only the | |
density is known." ACM Transactions on Modeling and Computer | |
Simulation (TOMACS) 20.4 (2010): 1-25. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy import stats | |
>>> from scipy.stats.sampling import FastGeneratorInversion | |
Create an object for the normal distribution: | |
>>> d_norm_frozen = stats.norm() | |
>>> d_norm = FastGeneratorInversion(d_norm_frozen) | |
To confirm that the numerical inversion is accurate, we evaluate the | |
approximation error (u-error and x-error). | |
>>> u_error, x_error = d_norm.evaluate_error(x_error=True) | |
The u-error should be below 1e-10: | |
>>> u_error | |
8.785783212061915e-11 # may vary | |
Compare the PPF against approximation `ppf`: | |
>>> q = [0.001, 0.2, 0.4, 0.6, 0.8, 0.999] | |
>>> diff = np.abs(d_norm_frozen.ppf(q) - d_norm.ppf(q)) | |
>>> x_error_abs = np.max(diff) | |
>>> x_error_abs | |
1.2937954707581412e-08 | |
This is the absolute x-error evaluated at the points q. The relative | |
error is given by | |
>>> x_error_rel = np.max(diff / np.abs(d_norm_frozen.ppf(q))) | |
>>> x_error_rel | |
4.186725600453555e-09 | |
The x_error computed above is derived in a very similar way over a | |
much larger set of random values q. At each value q[i], the minimum | |
of the relative and absolute error is taken. The final value is then | |
derived as the maximum of these values. In our example, we get the | |
following value: | |
>>> x_error | |
4.507068014335139e-07 # may vary | |
""" | |
if not isinstance(size, (numbers.Integral, np.integer)): | |
raise ValueError("size must be an integer.") | |
# urng will be used to draw the samples for testing the error | |
# it must not interfere with self.random_state. therefore, do not | |
# call self.rvs, but draw uniform random numbers and apply | |
# self.ppf (note: like in rvs, consider self._mirror_uniform) | |
urng = check_random_state_qmc(random_state) | |
u = urng.uniform(size=size) | |
if self._mirror_uniform: | |
u = 1 - u | |
x = self.ppf(u) | |
uerr = np.max(np.abs(self._cdf(x) - u)) | |
if not x_error: | |
return uerr, np.nan | |
ppf_u = self._ppf(u) | |
x_error_abs = np.abs(self.ppf(u)-ppf_u) | |
x_error_rel = x_error_abs / np.abs(ppf_u) | |
x_error_combined = np.array([x_error_abs, x_error_rel]).min(axis=0) | |
return uerr, np.max(x_error_combined) | |
def support(self): | |
"""Support of the distribution. | |
Returns | |
------- | |
a, b : float | |
end-points of the distribution's support. | |
Notes | |
----- | |
Note that the support of the distribution depends on `loc`, | |
`scale` and `domain`. | |
Examples | |
-------- | |
>>> from scipy import stats | |
>>> from scipy.stats.sampling import FastGeneratorInversion | |
Define a truncated normal distribution: | |
>>> d_norm = FastGeneratorInversion(stats.norm(), domain=(0, 1)) | |
>>> d_norm.support() | |
(0, 1) | |
Shift the distribution: | |
>>> d_norm.loc = 2.5 | |
>>> d_norm.support() | |
(2.5, 3.5) | |
""" | |
return self._domain_adj | |
def _cdf(self, x): | |
"""Cumulative distribution function (CDF) | |
Parameters | |
---------- | |
x : array_like | |
The values where the CDF is evaluated | |
Returns | |
------- | |
y : ndarray | |
CDF evaluated at x | |
""" | |
y = self._frozendist.cdf(x) | |
if self._p_domain == 1.0: | |
return y | |
return np.clip((y - self._p_lower) / self._p_domain, 0, 1) | |
def _ppf(self, q): | |
"""Percent point function (inverse of `cdf`) | |
Parameters | |
---------- | |
q : array_like | |
lower tail probability | |
Returns | |
------- | |
x : array_like | |
quantile corresponding to the lower tail probability q. | |
""" | |
if self._p_domain == 1.0: | |
return self._frozendist.ppf(q) | |
x = self._frozendist.ppf(self._p_domain * np.array(q) + self._p_lower) | |
return np.clip(x, self._domain_adj[0], self._domain_adj[1]) | |
class RatioUniforms: | |
""" | |
Generate random samples from a probability density function using the | |
ratio-of-uniforms method. | |
Parameters | |
---------- | |
pdf : callable | |
A function with signature `pdf(x)` that is proportional to the | |
probability density function of the distribution. | |
umax : float | |
The upper bound of the bounding rectangle in the u-direction. | |
vmin : float | |
The lower bound of the bounding rectangle in the v-direction. | |
vmax : float | |
The upper bound of the bounding rectangle in the v-direction. | |
c : float, optional. | |
Shift parameter of ratio-of-uniforms method, see Notes. Default is 0. | |
random_state : {None, int, `numpy.random.Generator`, | |
`numpy.random.RandomState`}, optional | |
If `seed` is None (or `np.random`), the `numpy.random.RandomState` | |
singleton is used. | |
If `seed` is an int, a new ``RandomState`` instance is used, | |
seeded with `seed`. | |
If `seed` is already a ``Generator`` or ``RandomState`` instance then | |
that instance is used. | |
Methods | |
------- | |
rvs | |
Notes | |
----- | |
Given a univariate probability density function `pdf` and a constant `c`, | |
define the set ``A = {(u, v) : 0 < u <= sqrt(pdf(v/u + c))}``. | |
If ``(U, V)`` is a random vector uniformly distributed over ``A``, | |
then ``V/U + c`` follows a distribution according to `pdf`. | |
The above result (see [1]_, [2]_) can be used to sample random variables | |
using only the PDF, i.e. no inversion of the CDF is required. Typical | |
choices of `c` are zero or the mode of `pdf`. The set ``A`` is a subset of | |
the rectangle ``R = [0, umax] x [vmin, vmax]`` where | |
- ``umax = sup sqrt(pdf(x))`` | |
- ``vmin = inf (x - c) sqrt(pdf(x))`` | |
- ``vmax = sup (x - c) sqrt(pdf(x))`` | |
In particular, these values are finite if `pdf` is bounded and | |
``x**2 * pdf(x)`` is bounded (i.e. subquadratic tails). | |
One can generate ``(U, V)`` uniformly on ``R`` and return | |
``V/U + c`` if ``(U, V)`` are also in ``A`` which can be directly | |
verified. | |
The algorithm is not changed if one replaces `pdf` by k * `pdf` for any | |
constant k > 0. Thus, it is often convenient to work with a function | |
that is proportional to the probability density function by dropping | |
unnecessary normalization factors. | |
Intuitively, the method works well if ``A`` fills up most of the | |
enclosing rectangle such that the probability is high that ``(U, V)`` | |
lies in ``A`` whenever it lies in ``R`` as the number of required | |
iterations becomes too large otherwise. To be more precise, note that | |
the expected number of iterations to draw ``(U, V)`` uniformly | |
distributed on ``R`` such that ``(U, V)`` is also in ``A`` is given by | |
the ratio ``area(R) / area(A) = 2 * umax * (vmax - vmin) / area(pdf)``, | |
where `area(pdf)` is the integral of `pdf` (which is equal to one if the | |
probability density function is used but can take on other values if a | |
function proportional to the density is used). The equality holds since | |
the area of ``A`` is equal to ``0.5 * area(pdf)`` (Theorem 7.1 in [1]_). | |
If the sampling fails to generate a single random variate after 50000 | |
iterations (i.e. not a single draw is in ``A``), an exception is raised. | |
If the bounding rectangle is not correctly specified (i.e. if it does not | |
contain ``A``), the algorithm samples from a distribution different from | |
the one given by `pdf`. It is therefore recommended to perform a | |
test such as `~scipy.stats.kstest` as a check. | |
References | |
---------- | |
.. [1] L. Devroye, "Non-Uniform Random Variate Generation", | |
Springer-Verlag, 1986. | |
.. [2] W. Hoermann and J. Leydold, "Generating generalized inverse Gaussian | |
random variates", Statistics and Computing, 24(4), p. 547--557, 2014. | |
.. [3] A.J. Kinderman and J.F. Monahan, "Computer Generation of Random | |
Variables Using the Ratio of Uniform Deviates", | |
ACM Transactions on Mathematical Software, 3(3), p. 257--260, 1977. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy import stats | |
>>> from scipy.stats.sampling import RatioUniforms | |
>>> rng = np.random.default_rng() | |
Simulate normally distributed random variables. It is easy to compute the | |
bounding rectangle explicitly in that case. For simplicity, we drop the | |
normalization factor of the density. | |
>>> f = lambda x: np.exp(-x**2 / 2) | |
>>> v = np.sqrt(f(np.sqrt(2))) * np.sqrt(2) | |
>>> umax = np.sqrt(f(0)) | |
>>> gen = RatioUniforms(f, umax=umax, vmin=-v, vmax=v, random_state=rng) | |
>>> r = gen.rvs(size=2500) | |
The K-S test confirms that the random variates are indeed normally | |
distributed (normality is not rejected at 5% significance level): | |
>>> stats.kstest(r, 'norm')[1] | |
0.250634764150542 | |
The exponential distribution provides another example where the bounding | |
rectangle can be determined explicitly. | |
>>> gen = RatioUniforms(lambda x: np.exp(-x), umax=1, vmin=0, | |
... vmax=2*np.exp(-1), random_state=rng) | |
>>> r = gen.rvs(1000) | |
>>> stats.kstest(r, 'expon')[1] | |
0.21121052054580314 | |
""" | |
def __init__(self, pdf, *, umax, vmin, vmax, c=0, random_state=None): | |
if vmin >= vmax: | |
raise ValueError("vmin must be smaller than vmax.") | |
if umax <= 0: | |
raise ValueError("umax must be positive.") | |
self._pdf = pdf | |
self._umax = umax | |
self._vmin = vmin | |
self._vmax = vmax | |
self._c = c | |
self._rng = check_random_state(random_state) | |
def rvs(self, size=1): | |
"""Sampling of random variates | |
Parameters | |
---------- | |
size : int or tuple of ints, optional | |
Number of random variates to be generated (default is 1). | |
Returns | |
------- | |
rvs : ndarray | |
The random variates distributed according to the probability | |
distribution defined by the pdf. | |
""" | |
size1d = tuple(np.atleast_1d(size)) | |
N = np.prod(size1d) # number of rvs needed, reshape upon return | |
# start sampling using ratio of uniforms method | |
x = np.zeros(N) | |
simulated, i = 0, 1 | |
# loop until N rvs have been generated: expected runtime is finite. | |
# to avoid infinite loop, raise exception if not a single rv has been | |
# generated after 50000 tries. even if the expected number of iterations | |
# is 1000, the probability of this event is (1-1/1000)**50000 | |
# which is of order 10e-22 | |
while simulated < N: | |
k = N - simulated | |
# simulate uniform rvs on [0, umax] and [vmin, vmax] | |
u1 = self._umax * self._rng.uniform(size=k) | |
v1 = self._rng.uniform(self._vmin, self._vmax, size=k) | |
# apply rejection method | |
rvs = v1 / u1 + self._c | |
accept = (u1**2 <= self._pdf(rvs)) | |
num_accept = np.sum(accept) | |
if num_accept > 0: | |
x[simulated:(simulated + num_accept)] = rvs[accept] | |
simulated += num_accept | |
if (simulated == 0) and (i*N >= 50000): | |
msg = ( | |
f"Not a single random variate could be generated in {i*N} " | |
"attempts. The ratio of uniforms method does not appear " | |
"to work for the provided parameters. Please check the " | |
"pdf and the bounds." | |
) | |
raise RuntimeError(msg) | |
i += 1 | |
return np.reshape(x, size1d) | |