peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/cluster
/tests
/test_dbscan.py
""" | |
Tests for DBSCAN clustering algorithm | |
""" | |
import pickle | |
import warnings | |
import numpy as np | |
import pytest | |
from scipy.spatial import distance | |
from sklearn.cluster import DBSCAN, dbscan | |
from sklearn.cluster.tests.common import generate_clustered_data | |
from sklearn.metrics.pairwise import pairwise_distances | |
from sklearn.neighbors import NearestNeighbors | |
from sklearn.utils._testing import assert_array_equal | |
from sklearn.utils.fixes import CSR_CONTAINERS, LIL_CONTAINERS | |
n_clusters = 3 | |
X = generate_clustered_data(n_clusters=n_clusters) | |
def test_dbscan_similarity(): | |
# Tests the DBSCAN algorithm with a similarity array. | |
# Parameters chosen specifically for this task. | |
eps = 0.15 | |
min_samples = 10 | |
# Compute similarities | |
D = distance.squareform(distance.pdist(X)) | |
D /= np.max(D) | |
# Compute DBSCAN | |
core_samples, labels = dbscan( | |
D, metric="precomputed", eps=eps, min_samples=min_samples | |
) | |
# number of clusters, ignoring noise if present | |
n_clusters_1 = len(set(labels)) - (1 if -1 in labels else 0) | |
assert n_clusters_1 == n_clusters | |
db = DBSCAN(metric="precomputed", eps=eps, min_samples=min_samples) | |
labels = db.fit(D).labels_ | |
n_clusters_2 = len(set(labels)) - int(-1 in labels) | |
assert n_clusters_2 == n_clusters | |
def test_dbscan_feature(): | |
# Tests the DBSCAN algorithm with a feature vector array. | |
# Parameters chosen specifically for this task. | |
# Different eps to other test, because distance is not normalised. | |
eps = 0.8 | |
min_samples = 10 | |
metric = "euclidean" | |
# Compute DBSCAN | |
# parameters chosen for task | |
core_samples, labels = dbscan(X, metric=metric, eps=eps, min_samples=min_samples) | |
# number of clusters, ignoring noise if present | |
n_clusters_1 = len(set(labels)) - int(-1 in labels) | |
assert n_clusters_1 == n_clusters | |
db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples) | |
labels = db.fit(X).labels_ | |
n_clusters_2 = len(set(labels)) - int(-1 in labels) | |
assert n_clusters_2 == n_clusters | |
def test_dbscan_sparse(lil_container): | |
core_sparse, labels_sparse = dbscan(lil_container(X), eps=0.8, min_samples=10) | |
core_dense, labels_dense = dbscan(X, eps=0.8, min_samples=10) | |
assert_array_equal(core_dense, core_sparse) | |
assert_array_equal(labels_dense, labels_sparse) | |
def test_dbscan_sparse_precomputed(include_self): | |
D = pairwise_distances(X) | |
nn = NearestNeighbors(radius=0.9).fit(X) | |
X_ = X if include_self else None | |
D_sparse = nn.radius_neighbors_graph(X=X_, mode="distance") | |
# Ensure it is sparse not merely on diagonals: | |
assert D_sparse.nnz < D.shape[0] * (D.shape[0] - 1) | |
core_sparse, labels_sparse = dbscan( | |
D_sparse, eps=0.8, min_samples=10, metric="precomputed" | |
) | |
core_dense, labels_dense = dbscan(D, eps=0.8, min_samples=10, metric="precomputed") | |
assert_array_equal(core_dense, core_sparse) | |
assert_array_equal(labels_dense, labels_sparse) | |
def test_dbscan_sparse_precomputed_different_eps(): | |
# test that precomputed neighbors graph is filtered if computed with | |
# a radius larger than DBSCAN's eps. | |
lower_eps = 0.2 | |
nn = NearestNeighbors(radius=lower_eps).fit(X) | |
D_sparse = nn.radius_neighbors_graph(X, mode="distance") | |
dbscan_lower = dbscan(D_sparse, eps=lower_eps, metric="precomputed") | |
higher_eps = lower_eps + 0.7 | |
nn = NearestNeighbors(radius=higher_eps).fit(X) | |
D_sparse = nn.radius_neighbors_graph(X, mode="distance") | |
dbscan_higher = dbscan(D_sparse, eps=lower_eps, metric="precomputed") | |
assert_array_equal(dbscan_lower[0], dbscan_higher[0]) | |
assert_array_equal(dbscan_lower[1], dbscan_higher[1]) | |
def test_dbscan_input_not_modified(metric, csr_container): | |
# test that the input is not modified by dbscan | |
X = np.random.RandomState(0).rand(10, 10) | |
X = csr_container(X) if csr_container is not None else X | |
X_copy = X.copy() | |
dbscan(X, metric=metric) | |
if csr_container is not None: | |
assert_array_equal(X.toarray(), X_copy.toarray()) | |
else: | |
assert_array_equal(X, X_copy) | |
def test_dbscan_input_not_modified_precomputed_sparse_nodiag(csr_container): | |
"""Check that we don't modify in-place the pre-computed sparse matrix. | |
Non-regression test for: | |
https://github.com/scikit-learn/scikit-learn/issues/27508 | |
""" | |
X = np.random.RandomState(0).rand(10, 10) | |
# Add zeros on the diagonal that will be implicit when creating | |
# the sparse matrix. If `X` is modified in-place, the zeros from | |
# the diagonal will be made explicit. | |
np.fill_diagonal(X, 0) | |
X = csr_container(X) | |
assert all(row != col for row, col in zip(*X.nonzero())) | |
X_copy = X.copy() | |
dbscan(X, metric="precomputed") | |
# Make sure that we did not modify `X` in-place even by creating | |
# explicit 0s values. | |
assert X.nnz == X_copy.nnz | |
assert_array_equal(X.toarray(), X_copy.toarray()) | |
def test_dbscan_no_core_samples(csr_container): | |
rng = np.random.RandomState(0) | |
X = rng.rand(40, 10) | |
X[X < 0.8] = 0 | |
for X_ in [X, csr_container(X)]: | |
db = DBSCAN(min_samples=6).fit(X_) | |
assert_array_equal(db.components_, np.empty((0, X_.shape[1]))) | |
assert_array_equal(db.labels_, -1) | |
assert db.core_sample_indices_.shape == (0,) | |
def test_dbscan_callable(): | |
# Tests the DBSCAN algorithm with a callable metric. | |
# Parameters chosen specifically for this task. | |
# Different eps to other test, because distance is not normalised. | |
eps = 0.8 | |
min_samples = 10 | |
# metric is the function reference, not the string key. | |
metric = distance.euclidean | |
# Compute DBSCAN | |
# parameters chosen for task | |
core_samples, labels = dbscan( | |
X, metric=metric, eps=eps, min_samples=min_samples, algorithm="ball_tree" | |
) | |
# number of clusters, ignoring noise if present | |
n_clusters_1 = len(set(labels)) - int(-1 in labels) | |
assert n_clusters_1 == n_clusters | |
db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples, algorithm="ball_tree") | |
labels = db.fit(X).labels_ | |
n_clusters_2 = len(set(labels)) - int(-1 in labels) | |
assert n_clusters_2 == n_clusters | |
def test_dbscan_metric_params(): | |
# Tests that DBSCAN works with the metrics_params argument. | |
eps = 0.8 | |
min_samples = 10 | |
p = 1 | |
# Compute DBSCAN with metric_params arg | |
with warnings.catch_warnings(record=True) as warns: | |
db = DBSCAN( | |
metric="minkowski", | |
metric_params={"p": p}, | |
eps=eps, | |
p=None, | |
min_samples=min_samples, | |
algorithm="ball_tree", | |
).fit(X) | |
assert not warns, warns[0].message | |
core_sample_1, labels_1 = db.core_sample_indices_, db.labels_ | |
# Test that sample labels are the same as passing Minkowski 'p' directly | |
db = DBSCAN( | |
metric="minkowski", eps=eps, min_samples=min_samples, algorithm="ball_tree", p=p | |
).fit(X) | |
core_sample_2, labels_2 = db.core_sample_indices_, db.labels_ | |
assert_array_equal(core_sample_1, core_sample_2) | |
assert_array_equal(labels_1, labels_2) | |
# Minkowski with p=1 should be equivalent to Manhattan distance | |
db = DBSCAN( | |
metric="manhattan", eps=eps, min_samples=min_samples, algorithm="ball_tree" | |
).fit(X) | |
core_sample_3, labels_3 = db.core_sample_indices_, db.labels_ | |
assert_array_equal(core_sample_1, core_sample_3) | |
assert_array_equal(labels_1, labels_3) | |
with pytest.warns( | |
SyntaxWarning, | |
match=( | |
"Parameter p is found in metric_params. " | |
"The corresponding parameter from __init__ " | |
"is ignored." | |
), | |
): | |
# Test that checks p is ignored in favor of metric_params={'p': <val>} | |
db = DBSCAN( | |
metric="minkowski", | |
metric_params={"p": p}, | |
eps=eps, | |
p=p + 1, | |
min_samples=min_samples, | |
algorithm="ball_tree", | |
).fit(X) | |
core_sample_4, labels_4 = db.core_sample_indices_, db.labels_ | |
assert_array_equal(core_sample_1, core_sample_4) | |
assert_array_equal(labels_1, labels_4) | |
def test_dbscan_balltree(): | |
# Tests the DBSCAN algorithm with balltree for neighbor calculation. | |
eps = 0.8 | |
min_samples = 10 | |
D = pairwise_distances(X) | |
core_samples, labels = dbscan( | |
D, metric="precomputed", eps=eps, min_samples=min_samples | |
) | |
# number of clusters, ignoring noise if present | |
n_clusters_1 = len(set(labels)) - int(-1 in labels) | |
assert n_clusters_1 == n_clusters | |
db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm="ball_tree") | |
labels = db.fit(X).labels_ | |
n_clusters_2 = len(set(labels)) - int(-1 in labels) | |
assert n_clusters_2 == n_clusters | |
db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm="kd_tree") | |
labels = db.fit(X).labels_ | |
n_clusters_3 = len(set(labels)) - int(-1 in labels) | |
assert n_clusters_3 == n_clusters | |
db = DBSCAN(p=1.0, eps=eps, min_samples=min_samples, algorithm="ball_tree") | |
labels = db.fit(X).labels_ | |
n_clusters_4 = len(set(labels)) - int(-1 in labels) | |
assert n_clusters_4 == n_clusters | |
db = DBSCAN(leaf_size=20, eps=eps, min_samples=min_samples, algorithm="ball_tree") | |
labels = db.fit(X).labels_ | |
n_clusters_5 = len(set(labels)) - int(-1 in labels) | |
assert n_clusters_5 == n_clusters | |
def test_input_validation(): | |
# DBSCAN.fit should accept a list of lists. | |
X = [[1.0, 2.0], [3.0, 4.0]] | |
DBSCAN().fit(X) # must not raise exception | |
def test_pickle(): | |
obj = DBSCAN() | |
s = pickle.dumps(obj) | |
assert type(pickle.loads(s)) == obj.__class__ | |
def test_boundaries(): | |
# ensure min_samples is inclusive of core point | |
core, _ = dbscan([[0], [1]], eps=2, min_samples=2) | |
assert 0 in core | |
# ensure eps is inclusive of circumference | |
core, _ = dbscan([[0], [1], [1]], eps=1, min_samples=2) | |
assert 0 in core | |
core, _ = dbscan([[0], [1], [1]], eps=0.99, min_samples=2) | |
assert 0 not in core | |
def test_weighted_dbscan(global_random_seed): | |
# ensure sample_weight is validated | |
with pytest.raises(ValueError): | |
dbscan([[0], [1]], sample_weight=[2]) | |
with pytest.raises(ValueError): | |
dbscan([[0], [1]], sample_weight=[2, 3, 4]) | |
# ensure sample_weight has an effect | |
assert_array_equal([], dbscan([[0], [1]], sample_weight=None, min_samples=6)[0]) | |
assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 5], min_samples=6)[0]) | |
assert_array_equal([0], dbscan([[0], [1]], sample_weight=[6, 5], min_samples=6)[0]) | |
assert_array_equal( | |
[0, 1], dbscan([[0], [1]], sample_weight=[6, 6], min_samples=6)[0] | |
) | |
# points within eps of each other: | |
assert_array_equal( | |
[0, 1], dbscan([[0], [1]], eps=1.5, sample_weight=[5, 1], min_samples=6)[0] | |
) | |
# and effect of non-positive and non-integer sample_weight: | |
assert_array_equal( | |
[], dbscan([[0], [1]], sample_weight=[5, 0], eps=1.5, min_samples=6)[0] | |
) | |
assert_array_equal( | |
[0, 1], dbscan([[0], [1]], sample_weight=[5.9, 0.1], eps=1.5, min_samples=6)[0] | |
) | |
assert_array_equal( | |
[0, 1], dbscan([[0], [1]], sample_weight=[6, 0], eps=1.5, min_samples=6)[0] | |
) | |
assert_array_equal( | |
[], dbscan([[0], [1]], sample_weight=[6, -1], eps=1.5, min_samples=6)[0] | |
) | |
# for non-negative sample_weight, cores should be identical to repetition | |
rng = np.random.RandomState(global_random_seed) | |
sample_weight = rng.randint(0, 5, X.shape[0]) | |
core1, label1 = dbscan(X, sample_weight=sample_weight) | |
assert len(label1) == len(X) | |
X_repeated = np.repeat(X, sample_weight, axis=0) | |
core_repeated, label_repeated = dbscan(X_repeated) | |
core_repeated_mask = np.zeros(X_repeated.shape[0], dtype=bool) | |
core_repeated_mask[core_repeated] = True | |
core_mask = np.zeros(X.shape[0], dtype=bool) | |
core_mask[core1] = True | |
assert_array_equal(np.repeat(core_mask, sample_weight), core_repeated_mask) | |
# sample_weight should work with precomputed distance matrix | |
D = pairwise_distances(X) | |
core3, label3 = dbscan(D, sample_weight=sample_weight, metric="precomputed") | |
assert_array_equal(core1, core3) | |
assert_array_equal(label1, label3) | |
# sample_weight should work with estimator | |
est = DBSCAN().fit(X, sample_weight=sample_weight) | |
core4 = est.core_sample_indices_ | |
label4 = est.labels_ | |
assert_array_equal(core1, core4) | |
assert_array_equal(label1, label4) | |
est = DBSCAN() | |
label5 = est.fit_predict(X, sample_weight=sample_weight) | |
core5 = est.core_sample_indices_ | |
assert_array_equal(core1, core5) | |
assert_array_equal(label1, label5) | |
assert_array_equal(label1, est.labels_) | |
def test_dbscan_core_samples_toy(algorithm): | |
X = [[0], [2], [3], [4], [6], [8], [10]] | |
n_samples = len(X) | |
# Degenerate case: every sample is a core sample, either with its own | |
# cluster or including other close core samples. | |
core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=1) | |
assert_array_equal(core_samples, np.arange(n_samples)) | |
assert_array_equal(labels, [0, 1, 1, 1, 2, 3, 4]) | |
# With eps=1 and min_samples=2 only the 3 samples from the denser area | |
# are core samples. All other points are isolated and considered noise. | |
core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=2) | |
assert_array_equal(core_samples, [1, 2, 3]) | |
assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1]) | |
# Only the sample in the middle of the dense area is core. Its two | |
# neighbors are edge samples. Remaining samples are noise. | |
core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=3) | |
assert_array_equal(core_samples, [2]) | |
assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1]) | |
# It's no longer possible to extract core samples with eps=1: | |
# everything is noise. | |
core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=4) | |
assert_array_equal(core_samples, []) | |
assert_array_equal(labels, np.full(n_samples, -1.0)) | |
def test_dbscan_precomputed_metric_with_degenerate_input_arrays(): | |
# see https://github.com/scikit-learn/scikit-learn/issues/4641 for | |
# more details | |
X = np.eye(10) | |
labels = DBSCAN(eps=0.5, metric="precomputed").fit(X).labels_ | |
assert len(set(labels)) == 1 | |
X = np.zeros((10, 10)) | |
labels = DBSCAN(eps=0.5, metric="precomputed").fit(X).labels_ | |
assert len(set(labels)) == 1 | |
def test_dbscan_precomputed_metric_with_initial_rows_zero(csr_container): | |
# sample matrix with initial two row all zero | |
ar = np.array( | |
[ | |
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], | |
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], | |
[0.0, 0.0, 0.0, 0.0, 0.1, 0.0, 0.0], | |
[0.0, 0.0, 0.0, 0.0, 0.1, 0.0, 0.0], | |
[0.0, 0.0, 0.1, 0.1, 0.0, 0.0, 0.3], | |
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1], | |
[0.0, 0.0, 0.0, 0.0, 0.3, 0.1, 0.0], | |
] | |
) | |
matrix = csr_container(ar) | |
labels = DBSCAN(eps=0.2, metric="precomputed", min_samples=2).fit(matrix).labels_ | |
assert_array_equal(labels, [-1, -1, 0, 0, 0, 1, 1]) | |