peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/cluster
/tests
/test_hdbscan.py
""" | |
Tests for HDBSCAN clustering algorithm | |
Based on the DBSCAN test code | |
""" | |
import numpy as np | |
import pytest | |
from scipy import stats | |
from scipy.spatial import distance | |
from sklearn.cluster import HDBSCAN | |
from sklearn.cluster._hdbscan._tree import ( | |
CONDENSED_dtype, | |
_condense_tree, | |
_do_labelling, | |
) | |
from sklearn.cluster._hdbscan.hdbscan import _OUTLIER_ENCODING | |
from sklearn.datasets import make_blobs | |
from sklearn.metrics import fowlkes_mallows_score | |
from sklearn.metrics.pairwise import _VALID_METRICS, euclidean_distances | |
from sklearn.neighbors import BallTree, KDTree | |
from sklearn.preprocessing import StandardScaler | |
from sklearn.utils import shuffle | |
from sklearn.utils._testing import assert_allclose, assert_array_equal | |
from sklearn.utils.fixes import CSC_CONTAINERS, CSR_CONTAINERS | |
X, y = make_blobs(n_samples=200, random_state=10) | |
X, y = shuffle(X, y, random_state=7) | |
X = StandardScaler().fit_transform(X) | |
ALGORITHMS = [ | |
"kd_tree", | |
"ball_tree", | |
"brute", | |
"auto", | |
] | |
OUTLIER_SET = {-1} | {out["label"] for _, out in _OUTLIER_ENCODING.items()} | |
def check_label_quality(labels, threshold=0.99): | |
n_clusters = len(set(labels) - OUTLIER_SET) | |
assert n_clusters == 3 | |
assert fowlkes_mallows_score(labels, y) > threshold | |
def test_outlier_data(outlier_type): | |
""" | |
Tests if np.inf and np.nan data are each treated as special outliers. | |
""" | |
outlier = { | |
"infinite": np.inf, | |
"missing": np.nan, | |
}[outlier_type] | |
prob_check = { | |
"infinite": lambda x, y: x == y, | |
"missing": lambda x, y: np.isnan(x), | |
}[outlier_type] | |
label = _OUTLIER_ENCODING[outlier_type]["label"] | |
prob = _OUTLIER_ENCODING[outlier_type]["prob"] | |
X_outlier = X.copy() | |
X_outlier[0] = [outlier, 1] | |
X_outlier[5] = [outlier, outlier] | |
model = HDBSCAN().fit(X_outlier) | |
(missing_labels_idx,) = (model.labels_ == label).nonzero() | |
assert_array_equal(missing_labels_idx, [0, 5]) | |
(missing_probs_idx,) = (prob_check(model.probabilities_, prob)).nonzero() | |
assert_array_equal(missing_probs_idx, [0, 5]) | |
clean_indices = list(range(1, 5)) + list(range(6, 200)) | |
clean_model = HDBSCAN().fit(X_outlier[clean_indices]) | |
assert_array_equal(clean_model.labels_, model.labels_[clean_indices]) | |
def test_hdbscan_distance_matrix(): | |
""" | |
Tests that HDBSCAN works with precomputed distance matrices, and throws the | |
appropriate errors when needed. | |
""" | |
D = euclidean_distances(X) | |
D_original = D.copy() | |
labels = HDBSCAN(metric="precomputed", copy=True).fit_predict(D) | |
assert_allclose(D, D_original) | |
check_label_quality(labels) | |
msg = r"The precomputed distance matrix.*has shape" | |
with pytest.raises(ValueError, match=msg): | |
HDBSCAN(metric="precomputed", copy=True).fit_predict(X) | |
msg = r"The precomputed distance matrix.*values" | |
# Ensure the matrix is not symmetric | |
D[0, 1] = 10 | |
D[1, 0] = 1 | |
with pytest.raises(ValueError, match=msg): | |
HDBSCAN(metric="precomputed").fit_predict(D) | |
def test_hdbscan_sparse_distance_matrix(sparse_constructor): | |
""" | |
Tests that HDBSCAN works with sparse distance matrices. | |
""" | |
D = distance.squareform(distance.pdist(X)) | |
D /= np.max(D) | |
threshold = stats.scoreatpercentile(D.flatten(), 50) | |
D[D >= threshold] = 0.0 | |
D = sparse_constructor(D) | |
D.eliminate_zeros() | |
labels = HDBSCAN(metric="precomputed").fit_predict(D) | |
check_label_quality(labels) | |
def test_hdbscan_feature_array(): | |
""" | |
Tests that HDBSCAN works with feature array, including an arbitrary | |
goodness of fit check. Note that the check is a simple heuristic. | |
""" | |
labels = HDBSCAN().fit_predict(X) | |
# Check that clustering is arbitrarily good | |
# This is a heuristic to guard against regression | |
check_label_quality(labels) | |
def test_hdbscan_algorithms(algo, metric): | |
""" | |
Tests that HDBSCAN works with the expected combinations of algorithms and | |
metrics, or raises the expected errors. | |
""" | |
labels = HDBSCAN(algorithm=algo).fit_predict(X) | |
check_label_quality(labels) | |
# Validation for brute is handled by `pairwise_distances` | |
if algo in ("brute", "auto"): | |
return | |
ALGOS_TREES = { | |
"kd_tree": KDTree, | |
"ball_tree": BallTree, | |
} | |
metric_params = { | |
"mahalanobis": {"V": np.eye(X.shape[1])}, | |
"seuclidean": {"V": np.ones(X.shape[1])}, | |
"minkowski": {"p": 2}, | |
"wminkowski": {"p": 2, "w": np.ones(X.shape[1])}, | |
}.get(metric, None) | |
hdb = HDBSCAN( | |
algorithm=algo, | |
metric=metric, | |
metric_params=metric_params, | |
) | |
if metric not in ALGOS_TREES[algo].valid_metrics: | |
with pytest.raises(ValueError): | |
hdb.fit(X) | |
elif metric == "wminkowski": | |
with pytest.warns(FutureWarning): | |
hdb.fit(X) | |
else: | |
hdb.fit(X) | |
def test_dbscan_clustering(): | |
""" | |
Tests that HDBSCAN can generate a sufficiently accurate dbscan clustering. | |
This test is more of a sanity check than a rigorous evaluation. | |
""" | |
clusterer = HDBSCAN().fit(X) | |
labels = clusterer.dbscan_clustering(0.3) | |
# We use a looser threshold due to dbscan producing a more constrained | |
# clustering representation | |
check_label_quality(labels, threshold=0.92) | |
def test_dbscan_clustering_outlier_data(cut_distance): | |
""" | |
Tests if np.inf and np.nan data are each treated as special outliers. | |
""" | |
missing_label = _OUTLIER_ENCODING["missing"]["label"] | |
infinite_label = _OUTLIER_ENCODING["infinite"]["label"] | |
X_outlier = X.copy() | |
X_outlier[0] = [np.inf, 1] | |
X_outlier[2] = [1, np.nan] | |
X_outlier[5] = [np.inf, np.nan] | |
model = HDBSCAN().fit(X_outlier) | |
labels = model.dbscan_clustering(cut_distance=cut_distance) | |
missing_labels_idx = np.flatnonzero(labels == missing_label) | |
assert_array_equal(missing_labels_idx, [2, 5]) | |
infinite_labels_idx = np.flatnonzero(labels == infinite_label) | |
assert_array_equal(infinite_labels_idx, [0]) | |
clean_idx = list(set(range(200)) - set(missing_labels_idx + infinite_labels_idx)) | |
clean_model = HDBSCAN().fit(X_outlier[clean_idx]) | |
clean_labels = clean_model.dbscan_clustering(cut_distance=cut_distance) | |
assert_array_equal(clean_labels, labels[clean_idx]) | |
def test_hdbscan_best_balltree_metric(): | |
""" | |
Tests that HDBSCAN using `BallTree` works. | |
""" | |
labels = HDBSCAN( | |
metric="seuclidean", metric_params={"V": np.ones(X.shape[1])} | |
).fit_predict(X) | |
check_label_quality(labels) | |
def test_hdbscan_no_clusters(): | |
""" | |
Tests that HDBSCAN correctly does not generate a valid cluster when the | |
`min_cluster_size` is too large for the data. | |
""" | |
labels = HDBSCAN(min_cluster_size=len(X) - 1).fit_predict(X) | |
assert set(labels).issubset(OUTLIER_SET) | |
def test_hdbscan_min_cluster_size(): | |
""" | |
Test that the smallest non-noise cluster has at least `min_cluster_size` | |
many points | |
""" | |
for min_cluster_size in range(2, len(X), 1): | |
labels = HDBSCAN(min_cluster_size=min_cluster_size).fit_predict(X) | |
true_labels = [label for label in labels if label != -1] | |
if len(true_labels) != 0: | |
assert np.min(np.bincount(true_labels)) >= min_cluster_size | |
def test_hdbscan_callable_metric(): | |
""" | |
Tests that HDBSCAN works when passed a callable metric. | |
""" | |
metric = distance.euclidean | |
labels = HDBSCAN(metric=metric).fit_predict(X) | |
check_label_quality(labels) | |
def test_hdbscan_precomputed_non_brute(tree): | |
""" | |
Tests that HDBSCAN correctly raises an error when passing precomputed data | |
while requesting a tree-based algorithm. | |
""" | |
hdb = HDBSCAN(metric="precomputed", algorithm=tree) | |
msg = "precomputed is not a valid metric for" | |
with pytest.raises(ValueError, match=msg): | |
hdb.fit(X) | |
def test_hdbscan_sparse(csr_container): | |
""" | |
Tests that HDBSCAN works correctly when passing sparse feature data. | |
Evaluates correctness by comparing against the same data passed as a dense | |
array. | |
""" | |
dense_labels = HDBSCAN().fit(X).labels_ | |
check_label_quality(dense_labels) | |
_X_sparse = csr_container(X) | |
X_sparse = _X_sparse.copy() | |
sparse_labels = HDBSCAN().fit(X_sparse).labels_ | |
assert_array_equal(dense_labels, sparse_labels) | |
# Compare that the sparse and dense non-precomputed routines return the same labels | |
# where the 0th observation contains the outlier. | |
for outlier_val, outlier_type in ((np.inf, "infinite"), (np.nan, "missing")): | |
X_dense = X.copy() | |
X_dense[0, 0] = outlier_val | |
dense_labels = HDBSCAN().fit(X_dense).labels_ | |
check_label_quality(dense_labels) | |
assert dense_labels[0] == _OUTLIER_ENCODING[outlier_type]["label"] | |
X_sparse = _X_sparse.copy() | |
X_sparse[0, 0] = outlier_val | |
sparse_labels = HDBSCAN().fit(X_sparse).labels_ | |
assert_array_equal(dense_labels, sparse_labels) | |
msg = "Sparse data matrices only support algorithm `brute`." | |
with pytest.raises(ValueError, match=msg): | |
HDBSCAN(metric="euclidean", algorithm="ball_tree").fit(X_sparse) | |
def test_hdbscan_centers(algorithm): | |
""" | |
Tests that HDBSCAN centers are calculated and stored properly, and are | |
accurate to the data. | |
""" | |
centers = [(0.0, 0.0), (3.0, 3.0)] | |
H, _ = make_blobs(n_samples=2000, random_state=0, centers=centers, cluster_std=0.5) | |
hdb = HDBSCAN(store_centers="both").fit(H) | |
for center, centroid, medoid in zip(centers, hdb.centroids_, hdb.medoids_): | |
assert_allclose(center, centroid, rtol=1, atol=0.05) | |
assert_allclose(center, medoid, rtol=1, atol=0.05) | |
# Ensure that nothing is done for noise | |
hdb = HDBSCAN( | |
algorithm=algorithm, store_centers="both", min_cluster_size=X.shape[0] | |
).fit(X) | |
assert hdb.centroids_.shape[0] == 0 | |
assert hdb.medoids_.shape[0] == 0 | |
def test_hdbscan_allow_single_cluster_with_epsilon(): | |
""" | |
Tests that HDBSCAN single-cluster selection with epsilon works correctly. | |
""" | |
rng = np.random.RandomState(0) | |
no_structure = rng.rand(150, 2) | |
# without epsilon we should see many noise points as children of root. | |
labels = HDBSCAN( | |
min_cluster_size=5, | |
cluster_selection_epsilon=0.0, | |
cluster_selection_method="eom", | |
allow_single_cluster=True, | |
).fit_predict(no_structure) | |
unique_labels, counts = np.unique(labels, return_counts=True) | |
assert len(unique_labels) == 2 | |
# Arbitrary heuristic. Would prefer something more precise. | |
assert counts[unique_labels == -1] > 30 | |
# for this random seed an epsilon of 0.18 will produce exactly 2 noise | |
# points at that cut in single linkage. | |
labels = HDBSCAN( | |
min_cluster_size=5, | |
cluster_selection_epsilon=0.18, | |
cluster_selection_method="eom", | |
allow_single_cluster=True, | |
algorithm="kd_tree", | |
).fit_predict(no_structure) | |
unique_labels, counts = np.unique(labels, return_counts=True) | |
assert len(unique_labels) == 2 | |
assert counts[unique_labels == -1] == 2 | |
def test_hdbscan_better_than_dbscan(): | |
""" | |
Validate that HDBSCAN can properly cluster this difficult synthetic | |
dataset. Note that DBSCAN fails on this (see HDBSCAN plotting | |
example) | |
""" | |
centers = [[-0.85, -0.85], [-0.85, 0.85], [3, 3], [3, -3]] | |
X, y = make_blobs( | |
n_samples=750, | |
centers=centers, | |
cluster_std=[0.2, 0.35, 1.35, 1.35], | |
random_state=0, | |
) | |
labels = HDBSCAN().fit(X).labels_ | |
n_clusters = len(set(labels)) - int(-1 in labels) | |
assert n_clusters == 4 | |
fowlkes_mallows_score(labels, y) > 0.99 | |
def test_hdbscan_usable_inputs(X, kwargs): | |
""" | |
Tests that HDBSCAN works correctly for array-likes and precomputed inputs | |
with non-finite points. | |
""" | |
HDBSCAN(min_samples=1, **kwargs).fit(X) | |
def test_hdbscan_sparse_distances_too_few_nonzero(csr_container): | |
""" | |
Tests that HDBSCAN raises the correct error when there are too few | |
non-zero distances. | |
""" | |
X = csr_container(np.zeros((10, 10))) | |
msg = "There exists points with fewer than" | |
with pytest.raises(ValueError, match=msg): | |
HDBSCAN(metric="precomputed").fit(X) | |
def test_hdbscan_sparse_distances_disconnected_graph(csr_container): | |
""" | |
Tests that HDBSCAN raises the correct error when the distance matrix | |
has multiple connected components. | |
""" | |
# Create symmetric sparse matrix with 2 connected components | |
X = np.zeros((20, 20)) | |
X[:5, :5] = 1 | |
X[5:, 15:] = 1 | |
X = X + X.T | |
X = csr_container(X) | |
msg = "HDBSCAN cannot be perfomed on a disconnected graph" | |
with pytest.raises(ValueError, match=msg): | |
HDBSCAN(metric="precomputed").fit(X) | |
def test_hdbscan_tree_invalid_metric(): | |
""" | |
Tests that HDBSCAN correctly raises an error for invalid metric choices. | |
""" | |
metric_callable = lambda x: x | |
msg = ( | |
".* is not a valid metric for a .*-based algorithm\\. Please select a different" | |
" metric\\." | |
) | |
# Callables are not supported for either | |
with pytest.raises(ValueError, match=msg): | |
HDBSCAN(algorithm="kd_tree", metric=metric_callable).fit(X) | |
with pytest.raises(ValueError, match=msg): | |
HDBSCAN(algorithm="ball_tree", metric=metric_callable).fit(X) | |
# The set of valid metrics for KDTree at the time of writing this test is a | |
# strict subset of those supported in BallTree | |
metrics_not_kd = list(set(BallTree.valid_metrics) - set(KDTree.valid_metrics)) | |
if len(metrics_not_kd) > 0: | |
with pytest.raises(ValueError, match=msg): | |
HDBSCAN(algorithm="kd_tree", metric=metrics_not_kd[0]).fit(X) | |
def test_hdbscan_too_many_min_samples(): | |
""" | |
Tests that HDBSCAN correctly raises an error when setting `min_samples` | |
larger than the number of samples. | |
""" | |
hdb = HDBSCAN(min_samples=len(X) + 1) | |
msg = r"min_samples (.*) must be at most" | |
with pytest.raises(ValueError, match=msg): | |
hdb.fit(X) | |
def test_hdbscan_precomputed_dense_nan(): | |
""" | |
Tests that HDBSCAN correctly raises an error when providing precomputed | |
distances with `np.nan` values. | |
""" | |
X_nan = X.copy() | |
X_nan[0, 0] = np.nan | |
msg = "np.nan values found in precomputed-dense" | |
hdb = HDBSCAN(metric="precomputed") | |
with pytest.raises(ValueError, match=msg): | |
hdb.fit(X_nan) | |
def test_labelling_distinct(global_random_seed, allow_single_cluster, epsilon): | |
""" | |
Tests that the `_do_labelling` helper function correctly assigns labels. | |
""" | |
n_samples = 48 | |
X, y = make_blobs( | |
n_samples, | |
random_state=global_random_seed, | |
# Ensure the clusters are distinct with no overlap | |
centers=[ | |
[0, 0], | |
[10, 0], | |
[0, 10], | |
], | |
) | |
est = HDBSCAN().fit(X) | |
condensed_tree = _condense_tree( | |
est._single_linkage_tree_, min_cluster_size=est.min_cluster_size | |
) | |
clusters = {n_samples + 2, n_samples + 3, n_samples + 4} | |
cluster_label_map = {n_samples + 2: 0, n_samples + 3: 1, n_samples + 4: 2} | |
labels = _do_labelling( | |
condensed_tree=condensed_tree, | |
clusters=clusters, | |
cluster_label_map=cluster_label_map, | |
allow_single_cluster=allow_single_cluster, | |
cluster_selection_epsilon=epsilon, | |
) | |
first_with_label = {_y: np.where(y == _y)[0][0] for _y in list(set(y))} | |
y_to_labels = {_y: labels[first_with_label[_y]] for _y in list(set(y))} | |
aligned_target = np.vectorize(y_to_labels.get)(y) | |
assert_array_equal(labels, aligned_target) | |
def test_labelling_thresholding(): | |
""" | |
Tests that the `_do_labelling` helper function correctly thresholds the | |
incoming lambda values given various `cluster_selection_epsilon` values. | |
""" | |
n_samples = 5 | |
MAX_LAMBDA = 1.5 | |
condensed_tree = np.array( | |
[ | |
(5, 2, MAX_LAMBDA, 1), | |
(5, 1, 0.1, 1), | |
(5, 0, MAX_LAMBDA, 1), | |
(5, 3, 0.2, 1), | |
(5, 4, 0.3, 1), | |
], | |
dtype=CONDENSED_dtype, | |
) | |
labels = _do_labelling( | |
condensed_tree=condensed_tree, | |
clusters={n_samples}, | |
cluster_label_map={n_samples: 0, n_samples + 1: 1}, | |
allow_single_cluster=True, | |
cluster_selection_epsilon=1, | |
) | |
num_noise = condensed_tree["value"] < 1 | |
assert sum(num_noise) == sum(labels == -1) | |
labels = _do_labelling( | |
condensed_tree=condensed_tree, | |
clusters={n_samples}, | |
cluster_label_map={n_samples: 0, n_samples + 1: 1}, | |
allow_single_cluster=True, | |
cluster_selection_epsilon=0, | |
) | |
# The threshold should be calculated per-sample based on the largest | |
# lambda of any simbling node. In this case, all points are siblings | |
# and the largest value is exactly MAX_LAMBDA. | |
num_noise = condensed_tree["value"] < MAX_LAMBDA | |
assert sum(num_noise) == sum(labels == -1) | |
# TODO(1.6): Remove | |
def test_hdbscan_warning_on_deprecated_algorithm_name(): | |
# Test that warning message is shown when algorithm='kdtree' | |
msg = ( | |
"`algorithm='kdtree'`has been deprecated in 1.4 and will be renamed" | |
" to'kd_tree'`in 1.6. To keep the past behaviour, set `algorithm='kd_tree'`." | |
) | |
with pytest.warns(FutureWarning, match=msg): | |
HDBSCAN(algorithm="kdtree").fit(X) | |
# Test that warning message is shown when algorithm='balltree' | |
msg = ( | |
"`algorithm='balltree'`has been deprecated in 1.4 and will be renamed" | |
" to'ball_tree'`in 1.6. To keep the past behaviour, set" | |
" `algorithm='ball_tree'`." | |
) | |
with pytest.warns(FutureWarning, match=msg): | |
HDBSCAN(algorithm="balltree").fit(X) | |
def test_hdbscan_error_precomputed_and_store_centers(store_centers): | |
"""Check that we raise an error if the centers are requested together with | |
a precomputed input matrix. | |
Non-regression test for: | |
https://github.com/scikit-learn/scikit-learn/issues/27893 | |
""" | |
rng = np.random.RandomState(0) | |
X = rng.random((100, 2)) | |
X_dist = euclidean_distances(X) | |
err_msg = "Cannot store centers when using a precomputed distance matrix." | |
with pytest.raises(ValueError, match=err_msg): | |
HDBSCAN(metric="precomputed", store_centers=store_centers).fit(X_dist) | |