peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/datasets
/_kddcup99.py
"""KDDCUP 99 dataset. | |
A classic dataset for anomaly detection. | |
The dataset page is available from UCI Machine Learning Repository | |
https://archive.ics.uci.edu/ml/machine-learning-databases/kddcup99-mld/kddcup.data.gz | |
""" | |
import errno | |
import logging | |
import os | |
from gzip import GzipFile | |
from os.path import exists, join | |
import joblib | |
import numpy as np | |
from ..utils import Bunch, check_random_state | |
from ..utils import shuffle as shuffle_method | |
from ..utils._param_validation import StrOptions, validate_params | |
from . import get_data_home | |
from ._base import ( | |
RemoteFileMetadata, | |
_convert_data_dataframe, | |
_fetch_remote, | |
load_descr, | |
) | |
# The original data can be found at: | |
# https://archive.ics.uci.edu/ml/machine-learning-databases/kddcup99-mld/kddcup.data.gz | |
ARCHIVE = RemoteFileMetadata( | |
filename="kddcup99_data", | |
url="https://ndownloader.figshare.com/files/5976045", | |
checksum="3b6c942aa0356c0ca35b7b595a26c89d343652c9db428893e7494f837b274292", | |
) | |
# The original data can be found at: | |
# https://archive.ics.uci.edu/ml/machine-learning-databases/kddcup99-mld/kddcup.data_10_percent.gz | |
ARCHIVE_10_PERCENT = RemoteFileMetadata( | |
filename="kddcup99_10_data", | |
url="https://ndownloader.figshare.com/files/5976042", | |
checksum="8045aca0d84e70e622d1148d7df782496f6333bf6eb979a1b0837c42a9fd9561", | |
) | |
logger = logging.getLogger(__name__) | |
def fetch_kddcup99( | |
*, | |
subset=None, | |
data_home=None, | |
shuffle=False, | |
random_state=None, | |
percent10=True, | |
download_if_missing=True, | |
return_X_y=False, | |
as_frame=False, | |
): | |
"""Load the kddcup99 dataset (classification). | |
Download it if necessary. | |
================= ==================================== | |
Classes 23 | |
Samples total 4898431 | |
Dimensionality 41 | |
Features discrete (int) or continuous (float) | |
================= ==================================== | |
Read more in the :ref:`User Guide <kddcup99_dataset>`. | |
.. versionadded:: 0.18 | |
Parameters | |
---------- | |
subset : {'SA', 'SF', 'http', 'smtp'}, default=None | |
To return the corresponding classical subsets of kddcup 99. | |
If None, return the entire kddcup 99 dataset. | |
data_home : str or path-like, default=None | |
Specify another download and cache folder for the datasets. By default | |
all scikit-learn data is stored in '~/scikit_learn_data' subfolders. | |
.. versionadded:: 0.19 | |
shuffle : bool, default=False | |
Whether to shuffle dataset. | |
random_state : int, RandomState instance or None, default=None | |
Determines random number generation for dataset shuffling and for | |
selection of abnormal samples if `subset='SA'`. Pass an int for | |
reproducible output across multiple function calls. | |
See :term:`Glossary <random_state>`. | |
percent10 : bool, default=True | |
Whether to load only 10 percent of the data. | |
download_if_missing : bool, default=True | |
If False, raise an OSError if the data is not locally available | |
instead of trying to download the data from the source site. | |
return_X_y : bool, default=False | |
If True, returns ``(data, target)`` instead of a Bunch object. See | |
below for more information about the `data` and `target` object. | |
.. versionadded:: 0.20 | |
as_frame : bool, default=False | |
If `True`, returns a pandas Dataframe for the ``data`` and ``target`` | |
objects in the `Bunch` returned object; `Bunch` return object will also | |
have a ``frame`` member. | |
.. versionadded:: 0.24 | |
Returns | |
------- | |
data : :class:`~sklearn.utils.Bunch` | |
Dictionary-like object, with the following attributes. | |
data : {ndarray, dataframe} of shape (494021, 41) | |
The data matrix to learn. If `as_frame=True`, `data` will be a | |
pandas DataFrame. | |
target : {ndarray, series} of shape (494021,) | |
The regression target for each sample. If `as_frame=True`, `target` | |
will be a pandas Series. | |
frame : dataframe of shape (494021, 42) | |
Only present when `as_frame=True`. Contains `data` and `target`. | |
DESCR : str | |
The full description of the dataset. | |
feature_names : list | |
The names of the dataset columns | |
target_names: list | |
The names of the target columns | |
(data, target) : tuple if ``return_X_y`` is True | |
A tuple of two ndarray. The first containing a 2D array of | |
shape (n_samples, n_features) with each row representing one | |
sample and each column representing the features. The second | |
ndarray of shape (n_samples,) containing the target samples. | |
.. versionadded:: 0.20 | |
""" | |
data_home = get_data_home(data_home=data_home) | |
kddcup99 = _fetch_brute_kddcup99( | |
data_home=data_home, | |
percent10=percent10, | |
download_if_missing=download_if_missing, | |
) | |
data = kddcup99.data | |
target = kddcup99.target | |
feature_names = kddcup99.feature_names | |
target_names = kddcup99.target_names | |
if subset == "SA": | |
s = target == b"normal." | |
t = np.logical_not(s) | |
normal_samples = data[s, :] | |
normal_targets = target[s] | |
abnormal_samples = data[t, :] | |
abnormal_targets = target[t] | |
n_samples_abnormal = abnormal_samples.shape[0] | |
# selected abnormal samples: | |
random_state = check_random_state(random_state) | |
r = random_state.randint(0, n_samples_abnormal, 3377) | |
abnormal_samples = abnormal_samples[r] | |
abnormal_targets = abnormal_targets[r] | |
data = np.r_[normal_samples, abnormal_samples] | |
target = np.r_[normal_targets, abnormal_targets] | |
if subset == "SF" or subset == "http" or subset == "smtp": | |
# select all samples with positive logged_in attribute: | |
s = data[:, 11] == 1 | |
data = np.c_[data[s, :11], data[s, 12:]] | |
feature_names = feature_names[:11] + feature_names[12:] | |
target = target[s] | |
data[:, 0] = np.log((data[:, 0] + 0.1).astype(float, copy=False)) | |
data[:, 4] = np.log((data[:, 4] + 0.1).astype(float, copy=False)) | |
data[:, 5] = np.log((data[:, 5] + 0.1).astype(float, copy=False)) | |
if subset == "http": | |
s = data[:, 2] == b"http" | |
data = data[s] | |
target = target[s] | |
data = np.c_[data[:, 0], data[:, 4], data[:, 5]] | |
feature_names = [feature_names[0], feature_names[4], feature_names[5]] | |
if subset == "smtp": | |
s = data[:, 2] == b"smtp" | |
data = data[s] | |
target = target[s] | |
data = np.c_[data[:, 0], data[:, 4], data[:, 5]] | |
feature_names = [feature_names[0], feature_names[4], feature_names[5]] | |
if subset == "SF": | |
data = np.c_[data[:, 0], data[:, 2], data[:, 4], data[:, 5]] | |
feature_names = [ | |
feature_names[0], | |
feature_names[2], | |
feature_names[4], | |
feature_names[5], | |
] | |
if shuffle: | |
data, target = shuffle_method(data, target, random_state=random_state) | |
fdescr = load_descr("kddcup99.rst") | |
frame = None | |
if as_frame: | |
frame, data, target = _convert_data_dataframe( | |
"fetch_kddcup99", data, target, feature_names, target_names | |
) | |
if return_X_y: | |
return data, target | |
return Bunch( | |
data=data, | |
target=target, | |
frame=frame, | |
target_names=target_names, | |
feature_names=feature_names, | |
DESCR=fdescr, | |
) | |
def _fetch_brute_kddcup99(data_home=None, download_if_missing=True, percent10=True): | |
"""Load the kddcup99 dataset, downloading it if necessary. | |
Parameters | |
---------- | |
data_home : str, default=None | |
Specify another download and cache folder for the datasets. By default | |
all scikit-learn data is stored in '~/scikit_learn_data' subfolders. | |
download_if_missing : bool, default=True | |
If False, raise an OSError if the data is not locally available | |
instead of trying to download the data from the source site. | |
percent10 : bool, default=True | |
Whether to load only 10 percent of the data. | |
Returns | |
------- | |
dataset : :class:`~sklearn.utils.Bunch` | |
Dictionary-like object, with the following attributes. | |
data : ndarray of shape (494021, 41) | |
Each row corresponds to the 41 features in the dataset. | |
target : ndarray of shape (494021,) | |
Each value corresponds to one of the 21 attack types or to the | |
label 'normal.'. | |
feature_names : list | |
The names of the dataset columns | |
target_names: list | |
The names of the target columns | |
DESCR : str | |
Description of the kddcup99 dataset. | |
""" | |
data_home = get_data_home(data_home=data_home) | |
dir_suffix = "-py3" | |
if percent10: | |
kddcup_dir = join(data_home, "kddcup99_10" + dir_suffix) | |
archive = ARCHIVE_10_PERCENT | |
else: | |
kddcup_dir = join(data_home, "kddcup99" + dir_suffix) | |
archive = ARCHIVE | |
samples_path = join(kddcup_dir, "samples") | |
targets_path = join(kddcup_dir, "targets") | |
available = exists(samples_path) | |
dt = [ | |
("duration", int), | |
("protocol_type", "S4"), | |
("service", "S11"), | |
("flag", "S6"), | |
("src_bytes", int), | |
("dst_bytes", int), | |
("land", int), | |
("wrong_fragment", int), | |
("urgent", int), | |
("hot", int), | |
("num_failed_logins", int), | |
("logged_in", int), | |
("num_compromised", int), | |
("root_shell", int), | |
("su_attempted", int), | |
("num_root", int), | |
("num_file_creations", int), | |
("num_shells", int), | |
("num_access_files", int), | |
("num_outbound_cmds", int), | |
("is_host_login", int), | |
("is_guest_login", int), | |
("count", int), | |
("srv_count", int), | |
("serror_rate", float), | |
("srv_serror_rate", float), | |
("rerror_rate", float), | |
("srv_rerror_rate", float), | |
("same_srv_rate", float), | |
("diff_srv_rate", float), | |
("srv_diff_host_rate", float), | |
("dst_host_count", int), | |
("dst_host_srv_count", int), | |
("dst_host_same_srv_rate", float), | |
("dst_host_diff_srv_rate", float), | |
("dst_host_same_src_port_rate", float), | |
("dst_host_srv_diff_host_rate", float), | |
("dst_host_serror_rate", float), | |
("dst_host_srv_serror_rate", float), | |
("dst_host_rerror_rate", float), | |
("dst_host_srv_rerror_rate", float), | |
("labels", "S16"), | |
] | |
column_names = [c[0] for c in dt] | |
target_names = column_names[-1] | |
feature_names = column_names[:-1] | |
if available: | |
try: | |
X = joblib.load(samples_path) | |
y = joblib.load(targets_path) | |
except Exception as e: | |
raise OSError( | |
"The cache for fetch_kddcup99 is invalid, please delete " | |
f"{str(kddcup_dir)} and run the fetch_kddcup99 again" | |
) from e | |
elif download_if_missing: | |
_mkdirp(kddcup_dir) | |
logger.info("Downloading %s" % archive.url) | |
_fetch_remote(archive, dirname=kddcup_dir) | |
DT = np.dtype(dt) | |
logger.debug("extracting archive") | |
archive_path = join(kddcup_dir, archive.filename) | |
file_ = GzipFile(filename=archive_path, mode="r") | |
Xy = [] | |
for line in file_.readlines(): | |
line = line.decode() | |
Xy.append(line.replace("\n", "").split(",")) | |
file_.close() | |
logger.debug("extraction done") | |
os.remove(archive_path) | |
Xy = np.asarray(Xy, dtype=object) | |
for j in range(42): | |
Xy[:, j] = Xy[:, j].astype(DT[j]) | |
X = Xy[:, :-1] | |
y = Xy[:, -1] | |
# XXX bug when compress!=0: | |
# (error: 'Incorrect data length while decompressing[...] the file | |
# could be corrupted.') | |
joblib.dump(X, samples_path, compress=0) | |
joblib.dump(y, targets_path, compress=0) | |
else: | |
raise OSError("Data not found and `download_if_missing` is False") | |
return Bunch( | |
data=X, | |
target=y, | |
feature_names=feature_names, | |
target_names=[target_names], | |
) | |
def _mkdirp(d): | |
"""Ensure directory d exists (like mkdir -p on Unix) | |
No guarantee that the directory is writable. | |
""" | |
try: | |
os.makedirs(d) | |
except OSError as e: | |
if e.errno != errno.EEXIST: | |
raise | |