peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/ensemble
/tests
/test_bagging.py
""" | |
Testing for the bagging ensemble module (sklearn.ensemble.bagging). | |
""" | |
# Author: Gilles Louppe | |
# License: BSD 3 clause | |
from itertools import cycle, product | |
import joblib | |
import numpy as np | |
import pytest | |
from sklearn.base import BaseEstimator | |
from sklearn.datasets import load_diabetes, load_iris, make_hastie_10_2 | |
from sklearn.dummy import DummyClassifier, DummyRegressor | |
from sklearn.ensemble import ( | |
BaggingClassifier, | |
BaggingRegressor, | |
HistGradientBoostingClassifier, | |
HistGradientBoostingRegressor, | |
) | |
from sklearn.feature_selection import SelectKBest | |
from sklearn.linear_model import LogisticRegression, Perceptron | |
from sklearn.model_selection import GridSearchCV, ParameterGrid, train_test_split | |
from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor | |
from sklearn.pipeline import make_pipeline | |
from sklearn.preprocessing import FunctionTransformer, scale | |
from sklearn.random_projection import SparseRandomProjection | |
from sklearn.svm import SVC, SVR | |
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor | |
from sklearn.utils import check_random_state | |
from sklearn.utils._testing import assert_array_almost_equal, assert_array_equal | |
from sklearn.utils.fixes import CSC_CONTAINERS, CSR_CONTAINERS | |
rng = check_random_state(0) | |
# also load the iris dataset | |
# and randomly permute it | |
iris = load_iris() | |
perm = rng.permutation(iris.target.size) | |
iris.data = iris.data[perm] | |
iris.target = iris.target[perm] | |
# also load the diabetes dataset | |
# and randomly permute it | |
diabetes = load_diabetes() | |
perm = rng.permutation(diabetes.target.size) | |
diabetes.data = diabetes.data[perm] | |
diabetes.target = diabetes.target[perm] | |
def test_classification(): | |
# Check classification for various parameter settings. | |
rng = check_random_state(0) | |
X_train, X_test, y_train, y_test = train_test_split( | |
iris.data, iris.target, random_state=rng | |
) | |
grid = ParameterGrid( | |
{ | |
"max_samples": [0.5, 1.0], | |
"max_features": [1, 4], | |
"bootstrap": [True, False], | |
"bootstrap_features": [True, False], | |
} | |
) | |
estimators = [ | |
None, | |
DummyClassifier(), | |
Perceptron(max_iter=20), | |
DecisionTreeClassifier(max_depth=2), | |
KNeighborsClassifier(), | |
SVC(), | |
] | |
# Try different parameter settings with different base classifiers without | |
# doing the full cartesian product to keep the test durations low. | |
for params, estimator in zip(grid, cycle(estimators)): | |
BaggingClassifier( | |
estimator=estimator, | |
random_state=rng, | |
n_estimators=2, | |
**params, | |
).fit(X_train, y_train).predict(X_test) | |
def test_sparse_classification(sparse_container, params, method): | |
# Check classification for various parameter settings on sparse input. | |
class CustomSVC(SVC): | |
"""SVC variant that records the nature of the training set""" | |
def fit(self, X, y): | |
super().fit(X, y) | |
self.data_type_ = type(X) | |
return self | |
rng = check_random_state(0) | |
X_train, X_test, y_train, y_test = train_test_split( | |
scale(iris.data), iris.target, random_state=rng | |
) | |
X_train_sparse = sparse_container(X_train) | |
X_test_sparse = sparse_container(X_test) | |
# Trained on sparse format | |
sparse_classifier = BaggingClassifier( | |
estimator=CustomSVC(kernel="linear", decision_function_shape="ovr"), | |
random_state=1, | |
**params, | |
).fit(X_train_sparse, y_train) | |
sparse_results = getattr(sparse_classifier, method)(X_test_sparse) | |
# Trained on dense format | |
dense_classifier = BaggingClassifier( | |
estimator=CustomSVC(kernel="linear", decision_function_shape="ovr"), | |
random_state=1, | |
**params, | |
).fit(X_train, y_train) | |
dense_results = getattr(dense_classifier, method)(X_test) | |
assert_array_almost_equal(sparse_results, dense_results) | |
sparse_type = type(X_train_sparse) | |
types = [i.data_type_ for i in sparse_classifier.estimators_] | |
assert all([t == sparse_type for t in types]) | |
def test_regression(): | |
# Check regression for various parameter settings. | |
rng = check_random_state(0) | |
X_train, X_test, y_train, y_test = train_test_split( | |
diabetes.data[:50], diabetes.target[:50], random_state=rng | |
) | |
grid = ParameterGrid( | |
{ | |
"max_samples": [0.5, 1.0], | |
"max_features": [0.5, 1.0], | |
"bootstrap": [True, False], | |
"bootstrap_features": [True, False], | |
} | |
) | |
for estimator in [ | |
None, | |
DummyRegressor(), | |
DecisionTreeRegressor(), | |
KNeighborsRegressor(), | |
SVR(), | |
]: | |
for params in grid: | |
BaggingRegressor(estimator=estimator, random_state=rng, **params).fit( | |
X_train, y_train | |
).predict(X_test) | |
def test_sparse_regression(sparse_container): | |
# Check regression for various parameter settings on sparse input. | |
rng = check_random_state(0) | |
X_train, X_test, y_train, y_test = train_test_split( | |
diabetes.data[:50], diabetes.target[:50], random_state=rng | |
) | |
class CustomSVR(SVR): | |
"""SVC variant that records the nature of the training set""" | |
def fit(self, X, y): | |
super().fit(X, y) | |
self.data_type_ = type(X) | |
return self | |
parameter_sets = [ | |
{ | |
"max_samples": 0.5, | |
"max_features": 2, | |
"bootstrap": True, | |
"bootstrap_features": True, | |
}, | |
{ | |
"max_samples": 1.0, | |
"max_features": 4, | |
"bootstrap": True, | |
"bootstrap_features": True, | |
}, | |
{"max_features": 2, "bootstrap": False, "bootstrap_features": True}, | |
{"max_samples": 0.5, "bootstrap": True, "bootstrap_features": False}, | |
] | |
X_train_sparse = sparse_container(X_train) | |
X_test_sparse = sparse_container(X_test) | |
for params in parameter_sets: | |
# Trained on sparse format | |
sparse_classifier = BaggingRegressor( | |
estimator=CustomSVR(), random_state=1, **params | |
).fit(X_train_sparse, y_train) | |
sparse_results = sparse_classifier.predict(X_test_sparse) | |
# Trained on dense format | |
dense_results = ( | |
BaggingRegressor(estimator=CustomSVR(), random_state=1, **params) | |
.fit(X_train, y_train) | |
.predict(X_test) | |
) | |
sparse_type = type(X_train_sparse) | |
types = [i.data_type_ for i in sparse_classifier.estimators_] | |
assert_array_almost_equal(sparse_results, dense_results) | |
assert all([t == sparse_type for t in types]) | |
assert_array_almost_equal(sparse_results, dense_results) | |
class DummySizeEstimator(BaseEstimator): | |
def fit(self, X, y): | |
self.training_size_ = X.shape[0] | |
self.training_hash_ = joblib.hash(X) | |
def predict(self, X): | |
return np.ones(X.shape[0]) | |
def test_bootstrap_samples(): | |
# Test that bootstrapping samples generate non-perfect base estimators. | |
rng = check_random_state(0) | |
X_train, X_test, y_train, y_test = train_test_split( | |
diabetes.data, diabetes.target, random_state=rng | |
) | |
estimator = DecisionTreeRegressor().fit(X_train, y_train) | |
# without bootstrap, all trees are perfect on the training set | |
ensemble = BaggingRegressor( | |
estimator=DecisionTreeRegressor(), | |
max_samples=1.0, | |
bootstrap=False, | |
random_state=rng, | |
).fit(X_train, y_train) | |
assert estimator.score(X_train, y_train) == ensemble.score(X_train, y_train) | |
# with bootstrap, trees are no longer perfect on the training set | |
ensemble = BaggingRegressor( | |
estimator=DecisionTreeRegressor(), | |
max_samples=1.0, | |
bootstrap=True, | |
random_state=rng, | |
).fit(X_train, y_train) | |
assert estimator.score(X_train, y_train) > ensemble.score(X_train, y_train) | |
# check that each sampling correspond to a complete bootstrap resample. | |
# the size of each bootstrap should be the same as the input data but | |
# the data should be different (checked using the hash of the data). | |
ensemble = BaggingRegressor(estimator=DummySizeEstimator(), bootstrap=True).fit( | |
X_train, y_train | |
) | |
training_hash = [] | |
for estimator in ensemble.estimators_: | |
assert estimator.training_size_ == X_train.shape[0] | |
training_hash.append(estimator.training_hash_) | |
assert len(set(training_hash)) == len(training_hash) | |
def test_bootstrap_features(): | |
# Test that bootstrapping features may generate duplicate features. | |
rng = check_random_state(0) | |
X_train, X_test, y_train, y_test = train_test_split( | |
diabetes.data, diabetes.target, random_state=rng | |
) | |
ensemble = BaggingRegressor( | |
estimator=DecisionTreeRegressor(), | |
max_features=1.0, | |
bootstrap_features=False, | |
random_state=rng, | |
).fit(X_train, y_train) | |
for features in ensemble.estimators_features_: | |
assert diabetes.data.shape[1] == np.unique(features).shape[0] | |
ensemble = BaggingRegressor( | |
estimator=DecisionTreeRegressor(), | |
max_features=1.0, | |
bootstrap_features=True, | |
random_state=rng, | |
).fit(X_train, y_train) | |
for features in ensemble.estimators_features_: | |
assert diabetes.data.shape[1] > np.unique(features).shape[0] | |
def test_probability(): | |
# Predict probabilities. | |
rng = check_random_state(0) | |
X_train, X_test, y_train, y_test = train_test_split( | |
iris.data, iris.target, random_state=rng | |
) | |
with np.errstate(divide="ignore", invalid="ignore"): | |
# Normal case | |
ensemble = BaggingClassifier( | |
estimator=DecisionTreeClassifier(), random_state=rng | |
).fit(X_train, y_train) | |
assert_array_almost_equal( | |
np.sum(ensemble.predict_proba(X_test), axis=1), np.ones(len(X_test)) | |
) | |
assert_array_almost_equal( | |
ensemble.predict_proba(X_test), np.exp(ensemble.predict_log_proba(X_test)) | |
) | |
# Degenerate case, where some classes are missing | |
ensemble = BaggingClassifier( | |
estimator=LogisticRegression(), random_state=rng, max_samples=5 | |
).fit(X_train, y_train) | |
assert_array_almost_equal( | |
np.sum(ensemble.predict_proba(X_test), axis=1), np.ones(len(X_test)) | |
) | |
assert_array_almost_equal( | |
ensemble.predict_proba(X_test), np.exp(ensemble.predict_log_proba(X_test)) | |
) | |
def test_oob_score_classification(): | |
# Check that oob prediction is a good estimation of the generalization | |
# error. | |
rng = check_random_state(0) | |
X_train, X_test, y_train, y_test = train_test_split( | |
iris.data, iris.target, random_state=rng | |
) | |
for estimator in [DecisionTreeClassifier(), SVC()]: | |
clf = BaggingClassifier( | |
estimator=estimator, | |
n_estimators=100, | |
bootstrap=True, | |
oob_score=True, | |
random_state=rng, | |
).fit(X_train, y_train) | |
test_score = clf.score(X_test, y_test) | |
assert abs(test_score - clf.oob_score_) < 0.1 | |
# Test with few estimators | |
warn_msg = ( | |
"Some inputs do not have OOB scores. This probably means too few " | |
"estimators were used to compute any reliable oob estimates." | |
) | |
with pytest.warns(UserWarning, match=warn_msg): | |
clf = BaggingClassifier( | |
estimator=estimator, | |
n_estimators=1, | |
bootstrap=True, | |
oob_score=True, | |
random_state=rng, | |
) | |
clf.fit(X_train, y_train) | |
def test_oob_score_regression(): | |
# Check that oob prediction is a good estimation of the generalization | |
# error. | |
rng = check_random_state(0) | |
X_train, X_test, y_train, y_test = train_test_split( | |
diabetes.data, diabetes.target, random_state=rng | |
) | |
clf = BaggingRegressor( | |
estimator=DecisionTreeRegressor(), | |
n_estimators=50, | |
bootstrap=True, | |
oob_score=True, | |
random_state=rng, | |
).fit(X_train, y_train) | |
test_score = clf.score(X_test, y_test) | |
assert abs(test_score - clf.oob_score_) < 0.1 | |
# Test with few estimators | |
warn_msg = ( | |
"Some inputs do not have OOB scores. This probably means too few " | |
"estimators were used to compute any reliable oob estimates." | |
) | |
with pytest.warns(UserWarning, match=warn_msg): | |
regr = BaggingRegressor( | |
estimator=DecisionTreeRegressor(), | |
n_estimators=1, | |
bootstrap=True, | |
oob_score=True, | |
random_state=rng, | |
) | |
regr.fit(X_train, y_train) | |
def test_single_estimator(): | |
# Check singleton ensembles. | |
rng = check_random_state(0) | |
X_train, X_test, y_train, y_test = train_test_split( | |
diabetes.data, diabetes.target, random_state=rng | |
) | |
clf1 = BaggingRegressor( | |
estimator=KNeighborsRegressor(), | |
n_estimators=1, | |
bootstrap=False, | |
bootstrap_features=False, | |
random_state=rng, | |
).fit(X_train, y_train) | |
clf2 = KNeighborsRegressor().fit(X_train, y_train) | |
assert_array_almost_equal(clf1.predict(X_test), clf2.predict(X_test)) | |
def test_error(): | |
# Test support of decision_function | |
X, y = iris.data, iris.target | |
base = DecisionTreeClassifier() | |
assert not hasattr(BaggingClassifier(base).fit(X, y), "decision_function") | |
def test_parallel_classification(): | |
# Check parallel classification. | |
X_train, X_test, y_train, y_test = train_test_split( | |
iris.data, iris.target, random_state=0 | |
) | |
ensemble = BaggingClassifier( | |
DecisionTreeClassifier(), n_jobs=3, random_state=0 | |
).fit(X_train, y_train) | |
# predict_proba | |
y1 = ensemble.predict_proba(X_test) | |
ensemble.set_params(n_jobs=1) | |
y2 = ensemble.predict_proba(X_test) | |
assert_array_almost_equal(y1, y2) | |
ensemble = BaggingClassifier( | |
DecisionTreeClassifier(), n_jobs=1, random_state=0 | |
).fit(X_train, y_train) | |
y3 = ensemble.predict_proba(X_test) | |
assert_array_almost_equal(y1, y3) | |
# decision_function | |
ensemble = BaggingClassifier( | |
SVC(decision_function_shape="ovr"), n_jobs=3, random_state=0 | |
).fit(X_train, y_train) | |
decisions1 = ensemble.decision_function(X_test) | |
ensemble.set_params(n_jobs=1) | |
decisions2 = ensemble.decision_function(X_test) | |
assert_array_almost_equal(decisions1, decisions2) | |
ensemble = BaggingClassifier( | |
SVC(decision_function_shape="ovr"), n_jobs=1, random_state=0 | |
).fit(X_train, y_train) | |
decisions3 = ensemble.decision_function(X_test) | |
assert_array_almost_equal(decisions1, decisions3) | |
def test_parallel_regression(): | |
# Check parallel regression. | |
rng = check_random_state(0) | |
X_train, X_test, y_train, y_test = train_test_split( | |
diabetes.data, diabetes.target, random_state=rng | |
) | |
ensemble = BaggingRegressor(DecisionTreeRegressor(), n_jobs=3, random_state=0).fit( | |
X_train, y_train | |
) | |
ensemble.set_params(n_jobs=1) | |
y1 = ensemble.predict(X_test) | |
ensemble.set_params(n_jobs=2) | |
y2 = ensemble.predict(X_test) | |
assert_array_almost_equal(y1, y2) | |
ensemble = BaggingRegressor(DecisionTreeRegressor(), n_jobs=1, random_state=0).fit( | |
X_train, y_train | |
) | |
y3 = ensemble.predict(X_test) | |
assert_array_almost_equal(y1, y3) | |
def test_gridsearch(): | |
# Check that bagging ensembles can be grid-searched. | |
# Transform iris into a binary classification task | |
X, y = iris.data, iris.target | |
y[y == 2] = 1 | |
# Grid search with scoring based on decision_function | |
parameters = {"n_estimators": (1, 2), "estimator__C": (1, 2)} | |
GridSearchCV(BaggingClassifier(SVC()), parameters, scoring="roc_auc").fit(X, y) | |
def test_estimator(): | |
# Check estimator and its default values. | |
rng = check_random_state(0) | |
# Classification | |
X_train, X_test, y_train, y_test = train_test_split( | |
iris.data, iris.target, random_state=rng | |
) | |
ensemble = BaggingClassifier(None, n_jobs=3, random_state=0).fit(X_train, y_train) | |
assert isinstance(ensemble.estimator_, DecisionTreeClassifier) | |
ensemble = BaggingClassifier( | |
DecisionTreeClassifier(), n_jobs=3, random_state=0 | |
).fit(X_train, y_train) | |
assert isinstance(ensemble.estimator_, DecisionTreeClassifier) | |
ensemble = BaggingClassifier(Perceptron(), n_jobs=3, random_state=0).fit( | |
X_train, y_train | |
) | |
assert isinstance(ensemble.estimator_, Perceptron) | |
# Regression | |
X_train, X_test, y_train, y_test = train_test_split( | |
diabetes.data, diabetes.target, random_state=rng | |
) | |
ensemble = BaggingRegressor(None, n_jobs=3, random_state=0).fit(X_train, y_train) | |
assert isinstance(ensemble.estimator_, DecisionTreeRegressor) | |
ensemble = BaggingRegressor(DecisionTreeRegressor(), n_jobs=3, random_state=0).fit( | |
X_train, y_train | |
) | |
assert isinstance(ensemble.estimator_, DecisionTreeRegressor) | |
ensemble = BaggingRegressor(SVR(), n_jobs=3, random_state=0).fit(X_train, y_train) | |
assert isinstance(ensemble.estimator_, SVR) | |
def test_bagging_with_pipeline(): | |
estimator = BaggingClassifier( | |
make_pipeline(SelectKBest(k=1), DecisionTreeClassifier()), max_features=2 | |
) | |
estimator.fit(iris.data, iris.target) | |
assert isinstance(estimator[0].steps[-1][1].random_state, int) | |
class DummyZeroEstimator(BaseEstimator): | |
def fit(self, X, y): | |
self.classes_ = np.unique(y) | |
return self | |
def predict(self, X): | |
return self.classes_[np.zeros(X.shape[0], dtype=int)] | |
def test_bagging_sample_weight_unsupported_but_passed(): | |
estimator = BaggingClassifier(DummyZeroEstimator()) | |
rng = check_random_state(0) | |
estimator.fit(iris.data, iris.target).predict(iris.data) | |
with pytest.raises(ValueError): | |
estimator.fit( | |
iris.data, | |
iris.target, | |
sample_weight=rng.randint(10, size=(iris.data.shape[0])), | |
) | |
def test_warm_start(random_state=42): | |
# Test if fitting incrementally with warm start gives a forest of the | |
# right size and the same results as a normal fit. | |
X, y = make_hastie_10_2(n_samples=20, random_state=1) | |
clf_ws = None | |
for n_estimators in [5, 10]: | |
if clf_ws is None: | |
clf_ws = BaggingClassifier( | |
n_estimators=n_estimators, random_state=random_state, warm_start=True | |
) | |
else: | |
clf_ws.set_params(n_estimators=n_estimators) | |
clf_ws.fit(X, y) | |
assert len(clf_ws) == n_estimators | |
clf_no_ws = BaggingClassifier( | |
n_estimators=10, random_state=random_state, warm_start=False | |
) | |
clf_no_ws.fit(X, y) | |
assert set([tree.random_state for tree in clf_ws]) == set( | |
[tree.random_state for tree in clf_no_ws] | |
) | |
def test_warm_start_smaller_n_estimators(): | |
# Test if warm start'ed second fit with smaller n_estimators raises error. | |
X, y = make_hastie_10_2(n_samples=20, random_state=1) | |
clf = BaggingClassifier(n_estimators=5, warm_start=True) | |
clf.fit(X, y) | |
clf.set_params(n_estimators=4) | |
with pytest.raises(ValueError): | |
clf.fit(X, y) | |
def test_warm_start_equal_n_estimators(): | |
# Test that nothing happens when fitting without increasing n_estimators | |
X, y = make_hastie_10_2(n_samples=20, random_state=1) | |
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=43) | |
clf = BaggingClassifier(n_estimators=5, warm_start=True, random_state=83) | |
clf.fit(X_train, y_train) | |
y_pred = clf.predict(X_test) | |
# modify X to nonsense values, this should not change anything | |
X_train += 1.0 | |
warn_msg = "Warm-start fitting without increasing n_estimators does not" | |
with pytest.warns(UserWarning, match=warn_msg): | |
clf.fit(X_train, y_train) | |
assert_array_equal(y_pred, clf.predict(X_test)) | |
def test_warm_start_equivalence(): | |
# warm started classifier with 5+5 estimators should be equivalent to | |
# one classifier with 10 estimators | |
X, y = make_hastie_10_2(n_samples=20, random_state=1) | |
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=43) | |
clf_ws = BaggingClassifier(n_estimators=5, warm_start=True, random_state=3141) | |
clf_ws.fit(X_train, y_train) | |
clf_ws.set_params(n_estimators=10) | |
clf_ws.fit(X_train, y_train) | |
y1 = clf_ws.predict(X_test) | |
clf = BaggingClassifier(n_estimators=10, warm_start=False, random_state=3141) | |
clf.fit(X_train, y_train) | |
y2 = clf.predict(X_test) | |
assert_array_almost_equal(y1, y2) | |
def test_warm_start_with_oob_score_fails(): | |
# Check using oob_score and warm_start simultaneously fails | |
X, y = make_hastie_10_2(n_samples=20, random_state=1) | |
clf = BaggingClassifier(n_estimators=5, warm_start=True, oob_score=True) | |
with pytest.raises(ValueError): | |
clf.fit(X, y) | |
def test_oob_score_removed_on_warm_start(): | |
X, y = make_hastie_10_2(n_samples=100, random_state=1) | |
clf = BaggingClassifier(n_estimators=5, oob_score=True) | |
clf.fit(X, y) | |
clf.set_params(warm_start=True, oob_score=False, n_estimators=10) | |
clf.fit(X, y) | |
with pytest.raises(AttributeError): | |
getattr(clf, "oob_score_") | |
def test_oob_score_consistency(): | |
# Make sure OOB scores are identical when random_state, estimator, and | |
# training data are fixed and fitting is done twice | |
X, y = make_hastie_10_2(n_samples=200, random_state=1) | |
bagging = BaggingClassifier( | |
KNeighborsClassifier(), | |
max_samples=0.5, | |
max_features=0.5, | |
oob_score=True, | |
random_state=1, | |
) | |
assert bagging.fit(X, y).oob_score_ == bagging.fit(X, y).oob_score_ | |
def test_estimators_samples(): | |
# Check that format of estimators_samples_ is correct and that results | |
# generated at fit time can be identically reproduced at a later time | |
# using data saved in object attributes. | |
X, y = make_hastie_10_2(n_samples=200, random_state=1) | |
bagging = BaggingClassifier( | |
LogisticRegression(), | |
max_samples=0.5, | |
max_features=0.5, | |
random_state=1, | |
bootstrap=False, | |
) | |
bagging.fit(X, y) | |
# Get relevant attributes | |
estimators_samples = bagging.estimators_samples_ | |
estimators_features = bagging.estimators_features_ | |
estimators = bagging.estimators_ | |
# Test for correct formatting | |
assert len(estimators_samples) == len(estimators) | |
assert len(estimators_samples[0]) == len(X) // 2 | |
assert estimators_samples[0].dtype.kind == "i" | |
# Re-fit single estimator to test for consistent sampling | |
estimator_index = 0 | |
estimator_samples = estimators_samples[estimator_index] | |
estimator_features = estimators_features[estimator_index] | |
estimator = estimators[estimator_index] | |
X_train = (X[estimator_samples])[:, estimator_features] | |
y_train = y[estimator_samples] | |
orig_coefs = estimator.coef_ | |
estimator.fit(X_train, y_train) | |
new_coefs = estimator.coef_ | |
assert_array_almost_equal(orig_coefs, new_coefs) | |
def test_estimators_samples_deterministic(): | |
# This test is a regression test to check that with a random step | |
# (e.g. SparseRandomProjection) and a given random state, the results | |
# generated at fit time can be identically reproduced at a later time using | |
# data saved in object attributes. Check issue #9524 for full discussion. | |
iris = load_iris() | |
X, y = iris.data, iris.target | |
base_pipeline = make_pipeline( | |
SparseRandomProjection(n_components=2), LogisticRegression() | |
) | |
clf = BaggingClassifier(estimator=base_pipeline, max_samples=0.5, random_state=0) | |
clf.fit(X, y) | |
pipeline_estimator_coef = clf.estimators_[0].steps[-1][1].coef_.copy() | |
estimator = clf.estimators_[0] | |
estimator_sample = clf.estimators_samples_[0] | |
estimator_feature = clf.estimators_features_[0] | |
X_train = (X[estimator_sample])[:, estimator_feature] | |
y_train = y[estimator_sample] | |
estimator.fit(X_train, y_train) | |
assert_array_equal(estimator.steps[-1][1].coef_, pipeline_estimator_coef) | |
def test_max_samples_consistency(): | |
# Make sure validated max_samples and original max_samples are identical | |
# when valid integer max_samples supplied by user | |
max_samples = 100 | |
X, y = make_hastie_10_2(n_samples=2 * max_samples, random_state=1) | |
bagging = BaggingClassifier( | |
KNeighborsClassifier(), | |
max_samples=max_samples, | |
max_features=0.5, | |
random_state=1, | |
) | |
bagging.fit(X, y) | |
assert bagging._max_samples == max_samples | |
def test_set_oob_score_label_encoding(): | |
# Make sure the oob_score doesn't change when the labels change | |
# See: https://github.com/scikit-learn/scikit-learn/issues/8933 | |
random_state = 5 | |
X = [[-1], [0], [1]] * 5 | |
Y1 = ["A", "B", "C"] * 5 | |
Y2 = [-1, 0, 1] * 5 | |
Y3 = [0, 1, 2] * 5 | |
x1 = ( | |
BaggingClassifier(oob_score=True, random_state=random_state) | |
.fit(X, Y1) | |
.oob_score_ | |
) | |
x2 = ( | |
BaggingClassifier(oob_score=True, random_state=random_state) | |
.fit(X, Y2) | |
.oob_score_ | |
) | |
x3 = ( | |
BaggingClassifier(oob_score=True, random_state=random_state) | |
.fit(X, Y3) | |
.oob_score_ | |
) | |
assert [x1, x2] == [x3, x3] | |
def replace(X): | |
X = X.astype("float", copy=True) | |
X[~np.isfinite(X)] = 0 | |
return X | |
def test_bagging_regressor_with_missing_inputs(): | |
# Check that BaggingRegressor can accept X with missing/infinite data | |
X = np.array( | |
[ | |
[1, 3, 5], | |
[2, None, 6], | |
[2, np.nan, 6], | |
[2, np.inf, 6], | |
[2, -np.inf, 6], | |
] | |
) | |
y_values = [ | |
np.array([2, 3, 3, 3, 3]), | |
np.array( | |
[ | |
[2, 1, 9], | |
[3, 6, 8], | |
[3, 6, 8], | |
[3, 6, 8], | |
[3, 6, 8], | |
] | |
), | |
] | |
for y in y_values: | |
regressor = DecisionTreeRegressor() | |
pipeline = make_pipeline(FunctionTransformer(replace), regressor) | |
pipeline.fit(X, y).predict(X) | |
bagging_regressor = BaggingRegressor(pipeline) | |
y_hat = bagging_regressor.fit(X, y).predict(X) | |
assert y.shape == y_hat.shape | |
# Verify that exceptions can be raised by wrapper regressor | |
regressor = DecisionTreeRegressor() | |
pipeline = make_pipeline(regressor) | |
with pytest.raises(ValueError): | |
pipeline.fit(X, y) | |
bagging_regressor = BaggingRegressor(pipeline) | |
with pytest.raises(ValueError): | |
bagging_regressor.fit(X, y) | |
def test_bagging_classifier_with_missing_inputs(): | |
# Check that BaggingClassifier can accept X with missing/infinite data | |
X = np.array( | |
[ | |
[1, 3, 5], | |
[2, None, 6], | |
[2, np.nan, 6], | |
[2, np.inf, 6], | |
[2, -np.inf, 6], | |
] | |
) | |
y = np.array([3, 6, 6, 6, 6]) | |
classifier = DecisionTreeClassifier() | |
pipeline = make_pipeline(FunctionTransformer(replace), classifier) | |
pipeline.fit(X, y).predict(X) | |
bagging_classifier = BaggingClassifier(pipeline) | |
bagging_classifier.fit(X, y) | |
y_hat = bagging_classifier.predict(X) | |
assert y.shape == y_hat.shape | |
bagging_classifier.predict_log_proba(X) | |
bagging_classifier.predict_proba(X) | |
# Verify that exceptions can be raised by wrapper classifier | |
classifier = DecisionTreeClassifier() | |
pipeline = make_pipeline(classifier) | |
with pytest.raises(ValueError): | |
pipeline.fit(X, y) | |
bagging_classifier = BaggingClassifier(pipeline) | |
with pytest.raises(ValueError): | |
bagging_classifier.fit(X, y) | |
def test_bagging_small_max_features(): | |
# Check that Bagging estimator can accept low fractional max_features | |
X = np.array([[1, 2], [3, 4]]) | |
y = np.array([1, 0]) | |
bagging = BaggingClassifier(LogisticRegression(), max_features=0.3, random_state=1) | |
bagging.fit(X, y) | |
def test_bagging_get_estimators_indices(): | |
# Check that Bagging estimator can generate sample indices properly | |
# Non-regression test for: | |
# https://github.com/scikit-learn/scikit-learn/issues/16436 | |
rng = np.random.RandomState(0) | |
X = rng.randn(13, 4) | |
y = np.arange(13) | |
class MyEstimator(DecisionTreeRegressor): | |
"""An estimator which stores y indices information at fit.""" | |
def fit(self, X, y): | |
self._sample_indices = y | |
clf = BaggingRegressor(estimator=MyEstimator(), n_estimators=1, random_state=0) | |
clf.fit(X, y) | |
assert_array_equal(clf.estimators_[0]._sample_indices, clf.estimators_samples_[0]) | |
def test_bagging_allow_nan_tag(bagging, expected_allow_nan): | |
"""Check that bagging inherits allow_nan tag.""" | |
assert bagging._get_tags()["allow_nan"] == expected_allow_nan | |