peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/ensemble
/tests
/test_base.py
""" | |
Testing for the base module (sklearn.ensemble.base). | |
""" | |
# Authors: Gilles Louppe | |
# License: BSD 3 clause | |
from collections import OrderedDict | |
import numpy as np | |
from sklearn.datasets import load_iris | |
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis | |
from sklearn.ensemble import BaggingClassifier | |
from sklearn.ensemble._base import _set_random_states | |
from sklearn.feature_selection import SelectFromModel | |
from sklearn.linear_model import Perceptron | |
from sklearn.pipeline import Pipeline | |
def test_base(): | |
# Check BaseEnsemble methods. | |
ensemble = BaggingClassifier( | |
estimator=Perceptron(random_state=None), n_estimators=3 | |
) | |
iris = load_iris() | |
ensemble.fit(iris.data, iris.target) | |
ensemble.estimators_ = [] # empty the list and create estimators manually | |
ensemble._make_estimator() | |
random_state = np.random.RandomState(3) | |
ensemble._make_estimator(random_state=random_state) | |
ensemble._make_estimator(random_state=random_state) | |
ensemble._make_estimator(append=False) | |
assert 3 == len(ensemble) | |
assert 3 == len(ensemble.estimators_) | |
assert isinstance(ensemble[0], Perceptron) | |
assert ensemble[0].random_state is None | |
assert isinstance(ensemble[1].random_state, int) | |
assert isinstance(ensemble[2].random_state, int) | |
assert ensemble[1].random_state != ensemble[2].random_state | |
np_int_ensemble = BaggingClassifier( | |
estimator=Perceptron(), n_estimators=np.int32(3) | |
) | |
np_int_ensemble.fit(iris.data, iris.target) | |
def test_set_random_states(): | |
# Linear Discriminant Analysis doesn't have random state: smoke test | |
_set_random_states(LinearDiscriminantAnalysis(), random_state=17) | |
clf1 = Perceptron(random_state=None) | |
assert clf1.random_state is None | |
# check random_state is None still sets | |
_set_random_states(clf1, None) | |
assert isinstance(clf1.random_state, int) | |
# check random_state fixes results in consistent initialisation | |
_set_random_states(clf1, 3) | |
assert isinstance(clf1.random_state, int) | |
clf2 = Perceptron(random_state=None) | |
_set_random_states(clf2, 3) | |
assert clf1.random_state == clf2.random_state | |
# nested random_state | |
def make_steps(): | |
return [ | |
("sel", SelectFromModel(Perceptron(random_state=None))), | |
("clf", Perceptron(random_state=None)), | |
] | |
est1 = Pipeline(make_steps()) | |
_set_random_states(est1, 3) | |
assert isinstance(est1.steps[0][1].estimator.random_state, int) | |
assert isinstance(est1.steps[1][1].random_state, int) | |
assert ( | |
est1.get_params()["sel__estimator__random_state"] | |
!= est1.get_params()["clf__random_state"] | |
) | |
# ensure multiple random_state parameters are invariant to get_params() | |
# iteration order | |
class AlphaParamPipeline(Pipeline): | |
def get_params(self, *args, **kwargs): | |
params = Pipeline.get_params(self, *args, **kwargs).items() | |
return OrderedDict(sorted(params)) | |
class RevParamPipeline(Pipeline): | |
def get_params(self, *args, **kwargs): | |
params = Pipeline.get_params(self, *args, **kwargs).items() | |
return OrderedDict(sorted(params, reverse=True)) | |
for cls in [AlphaParamPipeline, RevParamPipeline]: | |
est2 = cls(make_steps()) | |
_set_random_states(est2, 3) | |
assert ( | |
est1.get_params()["sel__estimator__random_state"] | |
== est2.get_params()["sel__estimator__random_state"] | |
) | |
assert ( | |
est1.get_params()["clf__random_state"] | |
== est2.get_params()["clf__random_state"] | |
) | |