peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/metrics
/tests
/test_pairwise.py
import warnings | |
from types import GeneratorType | |
import numpy as np | |
from numpy import linalg | |
from scipy.sparse import issparse | |
from scipy.spatial.distance import ( | |
cdist, | |
cityblock, | |
cosine, | |
minkowski, | |
pdist, | |
squareform, | |
) | |
try: | |
from scipy.spatial.distance import wminkowski | |
except ImportError: | |
# In scipy 1.6.0, wminkowski is deprecated and minkowski | |
# should be used instead. | |
from scipy.spatial.distance import minkowski as wminkowski | |
import pytest | |
from sklearn import config_context | |
from sklearn.exceptions import DataConversionWarning | |
from sklearn.metrics.pairwise import ( | |
PAIRED_DISTANCES, | |
PAIRWISE_BOOLEAN_FUNCTIONS, | |
PAIRWISE_DISTANCE_FUNCTIONS, | |
PAIRWISE_KERNEL_FUNCTIONS, | |
_euclidean_distances_upcast, | |
additive_chi2_kernel, | |
check_paired_arrays, | |
check_pairwise_arrays, | |
chi2_kernel, | |
cosine_distances, | |
cosine_similarity, | |
euclidean_distances, | |
haversine_distances, | |
laplacian_kernel, | |
linear_kernel, | |
manhattan_distances, | |
nan_euclidean_distances, | |
paired_cosine_distances, | |
paired_distances, | |
paired_euclidean_distances, | |
paired_manhattan_distances, | |
pairwise_distances, | |
pairwise_distances_argmin, | |
pairwise_distances_argmin_min, | |
pairwise_distances_chunked, | |
pairwise_kernels, | |
polynomial_kernel, | |
rbf_kernel, | |
sigmoid_kernel, | |
) | |
from sklearn.preprocessing import normalize | |
from sklearn.utils._testing import ( | |
assert_allclose, | |
assert_almost_equal, | |
assert_array_equal, | |
ignore_warnings, | |
) | |
from sklearn.utils.fixes import ( | |
BSR_CONTAINERS, | |
COO_CONTAINERS, | |
CSC_CONTAINERS, | |
CSR_CONTAINERS, | |
DOK_CONTAINERS, | |
parse_version, | |
sp_version, | |
) | |
from sklearn.utils.parallel import Parallel, delayed | |
def test_pairwise_distances_for_dense_data(global_dtype): | |
# Test the pairwise_distance helper function. | |
rng = np.random.RandomState(0) | |
# Euclidean distance should be equivalent to calling the function. | |
X = rng.random_sample((5, 4)).astype(global_dtype, copy=False) | |
S = pairwise_distances(X, metric="euclidean") | |
S2 = euclidean_distances(X) | |
assert_allclose(S, S2) | |
assert S.dtype == S2.dtype == global_dtype | |
# Euclidean distance, with Y != X. | |
Y = rng.random_sample((2, 4)).astype(global_dtype, copy=False) | |
S = pairwise_distances(X, Y, metric="euclidean") | |
S2 = euclidean_distances(X, Y) | |
assert_allclose(S, S2) | |
assert S.dtype == S2.dtype == global_dtype | |
# Check to ensure NaNs work with pairwise_distances. | |
X_masked = rng.random_sample((5, 4)).astype(global_dtype, copy=False) | |
Y_masked = rng.random_sample((2, 4)).astype(global_dtype, copy=False) | |
X_masked[0, 0] = np.nan | |
Y_masked[0, 0] = np.nan | |
S_masked = pairwise_distances(X_masked, Y_masked, metric="nan_euclidean") | |
S2_masked = nan_euclidean_distances(X_masked, Y_masked) | |
assert_allclose(S_masked, S2_masked) | |
assert S_masked.dtype == S2_masked.dtype == global_dtype | |
# Test with tuples as X and Y | |
X_tuples = tuple([tuple([v for v in row]) for row in X]) | |
Y_tuples = tuple([tuple([v for v in row]) for row in Y]) | |
S2 = pairwise_distances(X_tuples, Y_tuples, metric="euclidean") | |
assert_allclose(S, S2) | |
assert S.dtype == S2.dtype == global_dtype | |
# Test haversine distance | |
# The data should be valid latitude and longitude | |
# haversine converts to float64 currently so we don't check dtypes. | |
X = rng.random_sample((5, 2)).astype(global_dtype, copy=False) | |
X[:, 0] = (X[:, 0] - 0.5) * 2 * np.pi / 2 | |
X[:, 1] = (X[:, 1] - 0.5) * 2 * np.pi | |
S = pairwise_distances(X, metric="haversine") | |
S2 = haversine_distances(X) | |
assert_allclose(S, S2) | |
# Test haversine distance, with Y != X | |
Y = rng.random_sample((2, 2)).astype(global_dtype, copy=False) | |
Y[:, 0] = (Y[:, 0] - 0.5) * 2 * np.pi / 2 | |
Y[:, 1] = (Y[:, 1] - 0.5) * 2 * np.pi | |
S = pairwise_distances(X, Y, metric="haversine") | |
S2 = haversine_distances(X, Y) | |
assert_allclose(S, S2) | |
# "cityblock" uses scikit-learn metric, cityblock (function) is | |
# scipy.spatial. | |
# The metric functions from scipy converts to float64 so we don't check the dtypes. | |
S = pairwise_distances(X, metric="cityblock") | |
S2 = pairwise_distances(X, metric=cityblock) | |
assert S.shape[0] == S.shape[1] | |
assert S.shape[0] == X.shape[0] | |
assert_allclose(S, S2) | |
# The manhattan metric should be equivalent to cityblock. | |
S = pairwise_distances(X, Y, metric="manhattan") | |
S2 = pairwise_distances(X, Y, metric=cityblock) | |
assert S.shape[0] == X.shape[0] | |
assert S.shape[1] == Y.shape[0] | |
assert_allclose(S, S2) | |
# Test cosine as a string metric versus cosine callable | |
# The string "cosine" uses sklearn.metric, | |
# while the function cosine is scipy.spatial | |
S = pairwise_distances(X, Y, metric="cosine") | |
S2 = pairwise_distances(X, Y, metric=cosine) | |
assert S.shape[0] == X.shape[0] | |
assert S.shape[1] == Y.shape[0] | |
assert_allclose(S, S2) | |
def test_pairwise_distances_for_sparse_data( | |
coo_container, csc_container, bsr_container, csr_container, global_dtype | |
): | |
# Test the pairwise_distance helper function. | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((5, 4)).astype(global_dtype, copy=False) | |
Y = rng.random_sample((2, 4)).astype(global_dtype, copy=False) | |
# Test with sparse X and Y, | |
# currently only supported for Euclidean, L1 and cosine. | |
X_sparse = csr_container(X) | |
Y_sparse = csr_container(Y) | |
S = pairwise_distances(X_sparse, Y_sparse, metric="euclidean") | |
S2 = euclidean_distances(X_sparse, Y_sparse) | |
assert_allclose(S, S2) | |
assert S.dtype == S2.dtype == global_dtype | |
S = pairwise_distances(X_sparse, Y_sparse, metric="cosine") | |
S2 = cosine_distances(X_sparse, Y_sparse) | |
assert_allclose(S, S2) | |
assert S.dtype == S2.dtype == global_dtype | |
S = pairwise_distances(X_sparse, csc_container(Y), metric="manhattan") | |
S2 = manhattan_distances(bsr_container(X), coo_container(Y)) | |
assert_allclose(S, S2) | |
if global_dtype == np.float64: | |
assert S.dtype == S2.dtype == global_dtype | |
else: | |
# TODO Fix manhattan_distances to preserve dtype. | |
# currently pairwise_distances uses manhattan_distances but converts the result | |
# back to the input dtype | |
with pytest.raises(AssertionError): | |
assert S.dtype == S2.dtype == global_dtype | |
S2 = manhattan_distances(X, Y) | |
assert_allclose(S, S2) | |
if global_dtype == np.float64: | |
assert S.dtype == S2.dtype == global_dtype | |
else: | |
# TODO Fix manhattan_distances to preserve dtype. | |
# currently pairwise_distances uses manhattan_distances but converts the result | |
# back to the input dtype | |
with pytest.raises(AssertionError): | |
assert S.dtype == S2.dtype == global_dtype | |
# Test with scipy.spatial.distance metric, with a kwd | |
kwds = {"p": 2.0} | |
S = pairwise_distances(X, Y, metric="minkowski", **kwds) | |
S2 = pairwise_distances(X, Y, metric=minkowski, **kwds) | |
assert_allclose(S, S2) | |
# same with Y = None | |
kwds = {"p": 2.0} | |
S = pairwise_distances(X, metric="minkowski", **kwds) | |
S2 = pairwise_distances(X, metric=minkowski, **kwds) | |
assert_allclose(S, S2) | |
# Test that scipy distance metrics throw an error if sparse matrix given | |
with pytest.raises(TypeError): | |
pairwise_distances(X_sparse, metric="minkowski") | |
with pytest.raises(TypeError): | |
pairwise_distances(X, Y_sparse, metric="minkowski") | |
def test_pairwise_boolean_distance(metric): | |
# test that we convert to boolean arrays for boolean distances | |
rng = np.random.RandomState(0) | |
X = rng.randn(5, 4) | |
Y = X.copy() | |
Y[0, 0] = 1 - Y[0, 0] | |
# ignore conversion to boolean in pairwise_distances | |
with ignore_warnings(category=DataConversionWarning): | |
for Z in [Y, None]: | |
res = pairwise_distances(X, Z, metric=metric) | |
np.nan_to_num(res, nan=0, posinf=0, neginf=0, copy=False) | |
assert np.sum(res != 0) == 0 | |
# non-boolean arrays are converted to boolean for boolean | |
# distance metrics with a data conversion warning | |
msg = "Data was converted to boolean for metric %s" % metric | |
with pytest.warns(DataConversionWarning, match=msg): | |
pairwise_distances(X, metric=metric) | |
# Check that the warning is raised if X is boolean by Y is not boolean: | |
with pytest.warns(DataConversionWarning, match=msg): | |
pairwise_distances(X.astype(bool), Y=Y, metric=metric) | |
# Check that no warning is raised if X is already boolean and Y is None: | |
with warnings.catch_warnings(): | |
warnings.simplefilter("error", DataConversionWarning) | |
pairwise_distances(X.astype(bool), metric=metric) | |
def test_no_data_conversion_warning(): | |
# No warnings issued if metric is not a boolean distance function | |
rng = np.random.RandomState(0) | |
X = rng.randn(5, 4) | |
with warnings.catch_warnings(): | |
warnings.simplefilter("error", DataConversionWarning) | |
pairwise_distances(X, metric="minkowski") | |
def test_pairwise_precomputed(func): | |
# Test correct shape | |
with pytest.raises(ValueError, match=".* shape .*"): | |
func(np.zeros((5, 3)), metric="precomputed") | |
# with two args | |
with pytest.raises(ValueError, match=".* shape .*"): | |
func(np.zeros((5, 3)), np.zeros((4, 4)), metric="precomputed") | |
# even if shape[1] agrees (although thus second arg is spurious) | |
with pytest.raises(ValueError, match=".* shape .*"): | |
func(np.zeros((5, 3)), np.zeros((4, 3)), metric="precomputed") | |
# Test not copied (if appropriate dtype) | |
S = np.zeros((5, 5)) | |
S2 = func(S, metric="precomputed") | |
assert S is S2 | |
# with two args | |
S = np.zeros((5, 3)) | |
S2 = func(S, np.zeros((3, 3)), metric="precomputed") | |
assert S is S2 | |
# Test always returns float dtype | |
S = func(np.array([[1]], dtype="int"), metric="precomputed") | |
assert "f" == S.dtype.kind | |
# Test converts list to array-like | |
S = func([[1.0]], metric="precomputed") | |
assert isinstance(S, np.ndarray) | |
def test_pairwise_precomputed_non_negative(): | |
# Test non-negative values | |
with pytest.raises(ValueError, match=".* non-negative values.*"): | |
pairwise_distances(np.full((5, 5), -1), metric="precomputed") | |
_minkowski_kwds = {"w": np.arange(1, 5).astype("double", copy=False), "p": 1} | |
_wminkowski_kwds = {"w": np.arange(1, 5).astype("double", copy=False), "p": 1} | |
def callable_rbf_kernel(x, y, **kwds): | |
# Callable version of pairwise.rbf_kernel. | |
K = rbf_kernel(np.atleast_2d(x), np.atleast_2d(y), **kwds) | |
# unpack the output since this is a scalar packed in a 0-dim array | |
return K.item() | |
def test_pairwise_parallel(func, metric, kwds, dtype): | |
rng = np.random.RandomState(0) | |
X = np.array(5 * rng.random_sample((5, 4)), dtype=dtype) | |
Y = np.array(5 * rng.random_sample((3, 4)), dtype=dtype) | |
S = func(X, metric=metric, n_jobs=1, **kwds) | |
S2 = func(X, metric=metric, n_jobs=2, **kwds) | |
assert_allclose(S, S2) | |
S = func(X, Y, metric=metric, n_jobs=1, **kwds) | |
S2 = func(X, Y, metric=metric, n_jobs=2, **kwds) | |
assert_allclose(S, S2) | |
def test_pairwise_callable_nonstrict_metric(): | |
# paired_distances should allow callable metric where metric(x, x) != 0 | |
# Knowing that the callable is a strict metric would allow the diagonal to | |
# be left uncalculated and set to 0. | |
assert pairwise_distances([[1.0]], metric=lambda x, y: 5)[0, 0] == 5 | |
# Test with all metrics that should be in PAIRWISE_KERNEL_FUNCTIONS. | |
def test_pairwise_kernels(metric, csr_container): | |
# Test the pairwise_kernels helper function. | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((5, 4)) | |
Y = rng.random_sample((2, 4)) | |
function = PAIRWISE_KERNEL_FUNCTIONS[metric] | |
# Test with Y=None | |
K1 = pairwise_kernels(X, metric=metric) | |
K2 = function(X) | |
assert_allclose(K1, K2) | |
# Test with Y=Y | |
K1 = pairwise_kernels(X, Y=Y, metric=metric) | |
K2 = function(X, Y=Y) | |
assert_allclose(K1, K2) | |
# Test with tuples as X and Y | |
X_tuples = tuple([tuple([v for v in row]) for row in X]) | |
Y_tuples = tuple([tuple([v for v in row]) for row in Y]) | |
K2 = pairwise_kernels(X_tuples, Y_tuples, metric=metric) | |
assert_allclose(K1, K2) | |
# Test with sparse X and Y | |
X_sparse = csr_container(X) | |
Y_sparse = csr_container(Y) | |
if metric in ["chi2", "additive_chi2"]: | |
# these don't support sparse matrices yet | |
return | |
K1 = pairwise_kernels(X_sparse, Y=Y_sparse, metric=metric) | |
assert_allclose(K1, K2) | |
def test_pairwise_kernels_callable(): | |
# Test the pairwise_kernels helper function | |
# with a callable function, with given keywords. | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((5, 4)) | |
Y = rng.random_sample((2, 4)) | |
metric = callable_rbf_kernel | |
kwds = {"gamma": 0.1} | |
K1 = pairwise_kernels(X, Y=Y, metric=metric, **kwds) | |
K2 = rbf_kernel(X, Y=Y, **kwds) | |
assert_allclose(K1, K2) | |
# callable function, X=Y | |
K1 = pairwise_kernels(X, Y=X, metric=metric, **kwds) | |
K2 = rbf_kernel(X, Y=X, **kwds) | |
assert_allclose(K1, K2) | |
def test_pairwise_kernels_filter_param(): | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((5, 4)) | |
Y = rng.random_sample((2, 4)) | |
K = rbf_kernel(X, Y, gamma=0.1) | |
params = {"gamma": 0.1, "blabla": ":)"} | |
K2 = pairwise_kernels(X, Y, metric="rbf", filter_params=True, **params) | |
assert_allclose(K, K2) | |
with pytest.raises(TypeError): | |
pairwise_kernels(X, Y, metric="rbf", **params) | |
def test_paired_distances(metric, func, csr_container): | |
# Test the pairwise_distance helper function. | |
rng = np.random.RandomState(0) | |
# Euclidean distance should be equivalent to calling the function. | |
X = rng.random_sample((5, 4)) | |
# Euclidean distance, with Y != X. | |
Y = rng.random_sample((5, 4)) | |
S = paired_distances(X, Y, metric=metric) | |
S2 = func(X, Y) | |
assert_allclose(S, S2) | |
S3 = func(csr_container(X), csr_container(Y)) | |
assert_allclose(S, S3) | |
if metric in PAIRWISE_DISTANCE_FUNCTIONS: | |
# Check the pairwise_distances implementation | |
# gives the same value | |
distances = PAIRWISE_DISTANCE_FUNCTIONS[metric](X, Y) | |
distances = np.diag(distances) | |
assert_allclose(distances, S) | |
def test_paired_distances_callable(global_dtype): | |
# Test the paired_distance helper function | |
# with the callable implementation | |
rng = np.random.RandomState(0) | |
# Euclidean distance should be equivalent to calling the function. | |
X = rng.random_sample((5, 4)).astype(global_dtype, copy=False) | |
# Euclidean distance, with Y != X. | |
Y = rng.random_sample((5, 4)).astype(global_dtype, copy=False) | |
S = paired_distances(X, Y, metric="manhattan") | |
S2 = paired_distances(X, Y, metric=lambda x, y: np.abs(x - y).sum(axis=0)) | |
assert_allclose(S, S2) | |
# Test that a value error is raised when the lengths of X and Y should not | |
# differ | |
Y = rng.random_sample((3, 4)) | |
with pytest.raises(ValueError): | |
paired_distances(X, Y) | |
def test_pairwise_distances_argmin_min(dok_container, csr_container, global_dtype): | |
# Check pairwise minimum distances computation for any metric | |
X = np.asarray([[0], [1]], dtype=global_dtype) | |
Y = np.asarray([[-2], [3]], dtype=global_dtype) | |
Xsp = dok_container(X) | |
Ysp = csr_container(Y, dtype=global_dtype) | |
expected_idx = [0, 1] | |
expected_vals = [2, 2] | |
expected_vals_sq = [4, 4] | |
# euclidean metric | |
idx, vals = pairwise_distances_argmin_min(X, Y, metric="euclidean") | |
idx2 = pairwise_distances_argmin(X, Y, metric="euclidean") | |
assert_allclose(idx, expected_idx) | |
assert_allclose(idx2, expected_idx) | |
assert_allclose(vals, expected_vals) | |
# sparse matrix case | |
idxsp, valssp = pairwise_distances_argmin_min(Xsp, Ysp, metric="euclidean") | |
idxsp2 = pairwise_distances_argmin(Xsp, Ysp, metric="euclidean") | |
assert_allclose(idxsp, expected_idx) | |
assert_allclose(idxsp2, expected_idx) | |
assert_allclose(valssp, expected_vals) | |
# We don't want np.matrix here | |
assert type(idxsp) == np.ndarray | |
assert type(valssp) == np.ndarray | |
# Squared Euclidean metric | |
idx, vals = pairwise_distances_argmin_min(X, Y, metric="sqeuclidean") | |
idx2, vals2 = pairwise_distances_argmin_min( | |
X, Y, metric="euclidean", metric_kwargs={"squared": True} | |
) | |
idx3 = pairwise_distances_argmin(X, Y, metric="sqeuclidean") | |
idx4 = pairwise_distances_argmin( | |
X, Y, metric="euclidean", metric_kwargs={"squared": True} | |
) | |
assert_allclose(vals, expected_vals_sq) | |
assert_allclose(vals2, expected_vals_sq) | |
assert_allclose(idx, expected_idx) | |
assert_allclose(idx2, expected_idx) | |
assert_allclose(idx3, expected_idx) | |
assert_allclose(idx4, expected_idx) | |
# Non-euclidean scikit-learn metric | |
idx, vals = pairwise_distances_argmin_min(X, Y, metric="manhattan") | |
idx2 = pairwise_distances_argmin(X, Y, metric="manhattan") | |
assert_allclose(idx, expected_idx) | |
assert_allclose(idx2, expected_idx) | |
assert_allclose(vals, expected_vals) | |
# sparse matrix case | |
idxsp, valssp = pairwise_distances_argmin_min(Xsp, Ysp, metric="manhattan") | |
idxsp2 = pairwise_distances_argmin(Xsp, Ysp, metric="manhattan") | |
assert_allclose(idxsp, expected_idx) | |
assert_allclose(idxsp2, expected_idx) | |
assert_allclose(valssp, expected_vals) | |
# Non-euclidean Scipy distance (callable) | |
idx, vals = pairwise_distances_argmin_min( | |
X, Y, metric=minkowski, metric_kwargs={"p": 2} | |
) | |
assert_allclose(idx, expected_idx) | |
assert_allclose(vals, expected_vals) | |
# Non-euclidean Scipy distance (string) | |
idx, vals = pairwise_distances_argmin_min( | |
X, Y, metric="minkowski", metric_kwargs={"p": 2} | |
) | |
assert_allclose(idx, expected_idx) | |
assert_allclose(vals, expected_vals) | |
# Compare with naive implementation | |
rng = np.random.RandomState(0) | |
X = rng.randn(97, 149) | |
Y = rng.randn(111, 149) | |
dist = pairwise_distances(X, Y, metric="manhattan") | |
dist_orig_ind = dist.argmin(axis=0) | |
dist_orig_val = dist[dist_orig_ind, range(len(dist_orig_ind))] | |
dist_chunked_ind, dist_chunked_val = pairwise_distances_argmin_min( | |
X, Y, axis=0, metric="manhattan" | |
) | |
assert_allclose(dist_orig_ind, dist_chunked_ind, rtol=1e-7) | |
assert_allclose(dist_orig_val, dist_chunked_val, rtol=1e-7) | |
# Changing the axis and permuting datasets must give the same results | |
argmin_0, dist_0 = pairwise_distances_argmin_min(X, Y, axis=0) | |
argmin_1, dist_1 = pairwise_distances_argmin_min(Y, X, axis=1) | |
assert_allclose(dist_0, dist_1) | |
assert_array_equal(argmin_0, argmin_1) | |
argmin_0, dist_0 = pairwise_distances_argmin_min(X, X, axis=0) | |
argmin_1, dist_1 = pairwise_distances_argmin_min(X, X, axis=1) | |
assert_allclose(dist_0, dist_1) | |
assert_array_equal(argmin_0, argmin_1) | |
# Changing the axis and permuting datasets must give the same results | |
argmin_0 = pairwise_distances_argmin(X, Y, axis=0) | |
argmin_1 = pairwise_distances_argmin(Y, X, axis=1) | |
assert_array_equal(argmin_0, argmin_1) | |
argmin_0 = pairwise_distances_argmin(X, X, axis=0) | |
argmin_1 = pairwise_distances_argmin(X, X, axis=1) | |
assert_array_equal(argmin_0, argmin_1) | |
# F-contiguous arrays must be supported and must return identical results. | |
argmin_C_contiguous = pairwise_distances_argmin(X, Y) | |
argmin_F_contiguous = pairwise_distances_argmin( | |
np.asfortranarray(X), np.asfortranarray(Y) | |
) | |
assert_array_equal(argmin_C_contiguous, argmin_F_contiguous) | |
def _reduce_func(dist, start): | |
return dist[:, :100] | |
def test_pairwise_distances_chunked_reduce(global_dtype): | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((400, 4)).astype(global_dtype, copy=False) | |
# Reduced Euclidean distance | |
S = pairwise_distances(X)[:, :100] | |
S_chunks = pairwise_distances_chunked( | |
X, None, reduce_func=_reduce_func, working_memory=2**-16 | |
) | |
assert isinstance(S_chunks, GeneratorType) | |
S_chunks = list(S_chunks) | |
assert len(S_chunks) > 1 | |
assert S_chunks[0].dtype == X.dtype | |
# atol is for diagonal where S is explicitly zeroed on the diagonal | |
assert_allclose(np.vstack(S_chunks), S, atol=1e-7) | |
def test_pairwise_distances_chunked_reduce_none(global_dtype): | |
# check that the reduce func is allowed to return None | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((10, 4)).astype(global_dtype, copy=False) | |
S_chunks = pairwise_distances_chunked( | |
X, None, reduce_func=lambda dist, start: None, working_memory=2**-16 | |
) | |
assert isinstance(S_chunks, GeneratorType) | |
S_chunks = list(S_chunks) | |
assert len(S_chunks) > 1 | |
assert all(chunk is None for chunk in S_chunks) | |
def test_pairwise_distances_chunked_reduce_valid(good_reduce): | |
X = np.arange(10).reshape(-1, 1) | |
S_chunks = pairwise_distances_chunked( | |
X, None, reduce_func=good_reduce, working_memory=64 | |
) | |
next(S_chunks) | |
def test_pairwise_distances_chunked_reduce_invalid( | |
global_dtype, bad_reduce, err_type, message | |
): | |
X = np.arange(10).reshape(-1, 1).astype(global_dtype, copy=False) | |
S_chunks = pairwise_distances_chunked( | |
X, None, reduce_func=bad_reduce, working_memory=64 | |
) | |
with pytest.raises(err_type, match=message): | |
next(S_chunks) | |
def check_pairwise_distances_chunked(X, Y, working_memory, metric="euclidean"): | |
gen = pairwise_distances_chunked(X, Y, working_memory=working_memory, metric=metric) | |
assert isinstance(gen, GeneratorType) | |
blockwise_distances = list(gen) | |
Y = X if Y is None else Y | |
min_block_mib = len(Y) * 8 * 2**-20 | |
for block in blockwise_distances: | |
memory_used = block.nbytes | |
assert memory_used <= max(working_memory, min_block_mib) * 2**20 | |
blockwise_distances = np.vstack(blockwise_distances) | |
S = pairwise_distances(X, Y, metric=metric) | |
assert_allclose(blockwise_distances, S, atol=1e-7) | |
def test_pairwise_distances_chunked_diagonal(metric, global_dtype): | |
rng = np.random.RandomState(0) | |
X = rng.normal(size=(1000, 10), scale=1e10).astype(global_dtype, copy=False) | |
chunks = list(pairwise_distances_chunked(X, working_memory=1, metric=metric)) | |
assert len(chunks) > 1 | |
assert_allclose(np.diag(np.vstack(chunks)), 0, rtol=1e-10) | |
def test_parallel_pairwise_distances_diagonal(metric, global_dtype): | |
rng = np.random.RandomState(0) | |
X = rng.normal(size=(1000, 10), scale=1e10).astype(global_dtype, copy=False) | |
distances = pairwise_distances(X, metric=metric, n_jobs=2) | |
assert_allclose(np.diag(distances), 0, atol=1e-10) | |
def test_pairwise_distances_chunked(global_dtype): | |
# Test the pairwise_distance helper function. | |
rng = np.random.RandomState(0) | |
# Euclidean distance should be equivalent to calling the function. | |
X = rng.random_sample((200, 4)).astype(global_dtype, copy=False) | |
check_pairwise_distances_chunked(X, None, working_memory=1, metric="euclidean") | |
# Test small amounts of memory | |
for power in range(-16, 0): | |
check_pairwise_distances_chunked( | |
X, None, working_memory=2**power, metric="euclidean" | |
) | |
# X as list | |
check_pairwise_distances_chunked( | |
X.tolist(), None, working_memory=1, metric="euclidean" | |
) | |
# Euclidean distance, with Y != X. | |
Y = rng.random_sample((100, 4)).astype(global_dtype, copy=False) | |
check_pairwise_distances_chunked(X, Y, working_memory=1, metric="euclidean") | |
check_pairwise_distances_chunked( | |
X.tolist(), Y.tolist(), working_memory=1, metric="euclidean" | |
) | |
# absurdly large working_memory | |
check_pairwise_distances_chunked(X, Y, working_memory=10000, metric="euclidean") | |
# "cityblock" uses scikit-learn metric, cityblock (function) is | |
# scipy.spatial. | |
check_pairwise_distances_chunked(X, Y, working_memory=1, metric="cityblock") | |
# Test precomputed returns all at once | |
D = pairwise_distances(X) | |
gen = pairwise_distances_chunked(D, working_memory=2**-16, metric="precomputed") | |
assert isinstance(gen, GeneratorType) | |
assert next(gen) is D | |
with pytest.raises(StopIteration): | |
next(gen) | |
def test_euclidean_distances_known_result(x_array_constr, y_array_constr): | |
# Check the pairwise Euclidean distances computation on known result | |
X = x_array_constr([[0]]) | |
Y = y_array_constr([[1], [2]]) | |
D = euclidean_distances(X, Y) | |
assert_allclose(D, [[1.0, 2.0]]) | |
def test_euclidean_distances_with_norms(global_dtype, y_array_constr): | |
# check that we still get the right answers with {X,Y}_norm_squared | |
# and that we get a wrong answer with wrong {X,Y}_norm_squared | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((10, 10)).astype(global_dtype, copy=False) | |
Y = rng.random_sample((20, 10)).astype(global_dtype, copy=False) | |
# norms will only be used if their dtype is float64 | |
X_norm_sq = (X.astype(np.float64) ** 2).sum(axis=1).reshape(1, -1) | |
Y_norm_sq = (Y.astype(np.float64) ** 2).sum(axis=1).reshape(1, -1) | |
Y = y_array_constr(Y) | |
D1 = euclidean_distances(X, Y) | |
D2 = euclidean_distances(X, Y, X_norm_squared=X_norm_sq) | |
D3 = euclidean_distances(X, Y, Y_norm_squared=Y_norm_sq) | |
D4 = euclidean_distances(X, Y, X_norm_squared=X_norm_sq, Y_norm_squared=Y_norm_sq) | |
assert_allclose(D2, D1) | |
assert_allclose(D3, D1) | |
assert_allclose(D4, D1) | |
# check we get the wrong answer with wrong {X,Y}_norm_squared | |
wrong_D = euclidean_distances( | |
X, | |
Y, | |
X_norm_squared=np.zeros_like(X_norm_sq), | |
Y_norm_squared=np.zeros_like(Y_norm_sq), | |
) | |
with pytest.raises(AssertionError): | |
assert_allclose(wrong_D, D1) | |
def test_euclidean_distances_float32_norms(global_random_seed, symmetric): | |
# Non-regression test for #27621 | |
rng = np.random.RandomState(global_random_seed) | |
X = rng.random_sample((10, 10)) | |
Y = X if symmetric else rng.random_sample((20, 10)) | |
X_norm_sq = (X.astype(np.float32) ** 2).sum(axis=1).reshape(1, -1) | |
Y_norm_sq = (Y.astype(np.float32) ** 2).sum(axis=1).reshape(1, -1) | |
D1 = euclidean_distances(X, Y) | |
D2 = euclidean_distances(X, Y, X_norm_squared=X_norm_sq) | |
D3 = euclidean_distances(X, Y, Y_norm_squared=Y_norm_sq) | |
D4 = euclidean_distances(X, Y, X_norm_squared=X_norm_sq, Y_norm_squared=Y_norm_sq) | |
assert_allclose(D2, D1) | |
assert_allclose(D3, D1) | |
assert_allclose(D4, D1) | |
def test_euclidean_distances_norm_shapes(): | |
# Check all accepted shapes for the norms or appropriate error messages. | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((10, 10)) | |
Y = rng.random_sample((20, 10)) | |
X_norm_squared = (X**2).sum(axis=1) | |
Y_norm_squared = (Y**2).sum(axis=1) | |
D1 = euclidean_distances( | |
X, Y, X_norm_squared=X_norm_squared, Y_norm_squared=Y_norm_squared | |
) | |
D2 = euclidean_distances( | |
X, | |
Y, | |
X_norm_squared=X_norm_squared.reshape(-1, 1), | |
Y_norm_squared=Y_norm_squared.reshape(-1, 1), | |
) | |
D3 = euclidean_distances( | |
X, | |
Y, | |
X_norm_squared=X_norm_squared.reshape(1, -1), | |
Y_norm_squared=Y_norm_squared.reshape(1, -1), | |
) | |
assert_allclose(D2, D1) | |
assert_allclose(D3, D1) | |
with pytest.raises(ValueError, match="Incompatible dimensions for X"): | |
euclidean_distances(X, Y, X_norm_squared=X_norm_squared[:5]) | |
with pytest.raises(ValueError, match="Incompatible dimensions for Y"): | |
euclidean_distances(X, Y, Y_norm_squared=Y_norm_squared[:5]) | |
def test_euclidean_distances(global_dtype, x_array_constr, y_array_constr): | |
# check that euclidean distances gives same result as scipy cdist | |
# when X and Y != X are provided | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((100, 10)).astype(global_dtype, copy=False) | |
X[X < 0.8] = 0 | |
Y = rng.random_sample((10, 10)).astype(global_dtype, copy=False) | |
Y[Y < 0.8] = 0 | |
expected = cdist(X, Y) | |
X = x_array_constr(X) | |
Y = y_array_constr(Y) | |
distances = euclidean_distances(X, Y) | |
# the default rtol=1e-7 is too close to the float32 precision | |
# and fails due to rounding errors. | |
assert_allclose(distances, expected, rtol=1e-6) | |
assert distances.dtype == global_dtype | |
def test_euclidean_distances_sym(global_dtype, x_array_constr): | |
# check that euclidean distances gives same result as scipy pdist | |
# when only X is provided | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((100, 10)).astype(global_dtype, copy=False) | |
X[X < 0.8] = 0 | |
expected = squareform(pdist(X)) | |
X = x_array_constr(X) | |
distances = euclidean_distances(X) | |
# the default rtol=1e-7 is too close to the float32 precision | |
# and fails due to rounding errors. | |
assert_allclose(distances, expected, rtol=1e-6) | |
assert distances.dtype == global_dtype | |
def test_euclidean_distances_upcast(batch_size, x_array_constr, y_array_constr): | |
# check batches handling when Y != X (#13910) | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((100, 10)).astype(np.float32) | |
X[X < 0.8] = 0 | |
Y = rng.random_sample((10, 10)).astype(np.float32) | |
Y[Y < 0.8] = 0 | |
expected = cdist(X, Y) | |
X = x_array_constr(X) | |
Y = y_array_constr(Y) | |
distances = _euclidean_distances_upcast(X, Y=Y, batch_size=batch_size) | |
distances = np.sqrt(np.maximum(distances, 0)) | |
# the default rtol=1e-7 is too close to the float32 precision | |
# and fails due to rounding errors. | |
assert_allclose(distances, expected, rtol=1e-6) | |
def test_euclidean_distances_upcast_sym(batch_size, x_array_constr): | |
# check batches handling when X is Y (#13910) | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((100, 10)).astype(np.float32) | |
X[X < 0.8] = 0 | |
expected = squareform(pdist(X)) | |
X = x_array_constr(X) | |
distances = _euclidean_distances_upcast(X, Y=X, batch_size=batch_size) | |
distances = np.sqrt(np.maximum(distances, 0)) | |
# the default rtol=1e-7 is too close to the float32 precision | |
# and fails due to rounding errors. | |
assert_allclose(distances, expected, rtol=1e-6) | |
def test_euclidean_distances_extreme_values(dtype, eps, rtol, dim): | |
# check that euclidean distances is correct with float32 input thanks to | |
# upcasting. On float64 there are still precision issues. | |
X = np.array([[1.0] * dim], dtype=dtype) | |
Y = np.array([[1.0 + eps] * dim], dtype=dtype) | |
distances = euclidean_distances(X, Y) | |
expected = cdist(X, Y) | |
assert_allclose(distances, expected, rtol=1e-5) | |
def test_nan_euclidean_distances_equal_to_euclidean_distance(squared): | |
# with no nan values | |
rng = np.random.RandomState(1337) | |
X = rng.randn(3, 4) | |
Y = rng.randn(4, 4) | |
normal_distance = euclidean_distances(X, Y=Y, squared=squared) | |
nan_distance = nan_euclidean_distances(X, Y=Y, squared=squared) | |
assert_allclose(normal_distance, nan_distance) | |
def test_nan_euclidean_distances_infinite_values(X, Y): | |
with pytest.raises(ValueError) as excinfo: | |
nan_euclidean_distances(X, Y=Y) | |
exp_msg = "Input contains infinity or a value too large for dtype('float64')." | |
assert exp_msg == str(excinfo.value) | |
def test_nan_euclidean_distances_2x2(X, X_diag, missing_value): | |
exp_dist = np.array([[0.0, X_diag], [X_diag, 0]]) | |
dist = nan_euclidean_distances(X, missing_values=missing_value) | |
assert_allclose(exp_dist, dist) | |
dist_sq = nan_euclidean_distances(X, squared=True, missing_values=missing_value) | |
assert_allclose(exp_dist**2, dist_sq) | |
dist_two = nan_euclidean_distances(X, X, missing_values=missing_value) | |
assert_allclose(exp_dist, dist_two) | |
dist_two_copy = nan_euclidean_distances(X, X.copy(), missing_values=missing_value) | |
assert_allclose(exp_dist, dist_two_copy) | |
def test_nan_euclidean_distances_complete_nan(missing_value): | |
X = np.array([[missing_value, missing_value], [0, 1]]) | |
exp_dist = np.array([[np.nan, np.nan], [np.nan, 0]]) | |
dist = nan_euclidean_distances(X, missing_values=missing_value) | |
assert_allclose(exp_dist, dist) | |
dist = nan_euclidean_distances(X, X.copy(), missing_values=missing_value) | |
assert_allclose(exp_dist, dist) | |
def test_nan_euclidean_distances_not_trival(missing_value): | |
X = np.array( | |
[ | |
[1.0, missing_value, 3.0, 4.0, 2.0], | |
[missing_value, 4.0, 6.0, 1.0, missing_value], | |
[3.0, missing_value, missing_value, missing_value, 1.0], | |
] | |
) | |
Y = np.array( | |
[ | |
[missing_value, 7.0, 7.0, missing_value, 2.0], | |
[missing_value, missing_value, 5.0, 4.0, 7.0], | |
[missing_value, missing_value, missing_value, 4.0, 5.0], | |
] | |
) | |
# Check for symmetry | |
D1 = nan_euclidean_distances(X, Y, missing_values=missing_value) | |
D2 = nan_euclidean_distances(Y, X, missing_values=missing_value) | |
assert_almost_equal(D1, D2.T) | |
# Check with explicit formula and squared=True | |
assert_allclose( | |
nan_euclidean_distances( | |
X[:1], Y[:1], squared=True, missing_values=missing_value | |
), | |
[[5.0 / 2.0 * ((7 - 3) ** 2 + (2 - 2) ** 2)]], | |
) | |
# Check with explicit formula and squared=False | |
assert_allclose( | |
nan_euclidean_distances( | |
X[1:2], Y[1:2], squared=False, missing_values=missing_value | |
), | |
[[np.sqrt(5.0 / 2.0 * ((6 - 5) ** 2 + (1 - 4) ** 2))]], | |
) | |
# Check when Y = X is explicitly passed | |
D3 = nan_euclidean_distances(X, missing_values=missing_value) | |
D4 = nan_euclidean_distances(X, X, missing_values=missing_value) | |
D5 = nan_euclidean_distances(X, X.copy(), missing_values=missing_value) | |
assert_allclose(D3, D4) | |
assert_allclose(D4, D5) | |
# Check copy = True against copy = False | |
D6 = nan_euclidean_distances(X, Y, copy=True) | |
D7 = nan_euclidean_distances(X, Y, copy=False) | |
assert_allclose(D6, D7) | |
def test_nan_euclidean_distances_one_feature_match_positive(missing_value): | |
# First feature is the only feature that is non-nan and in both | |
# samples. The result of `nan_euclidean_distances` with squared=True | |
# should be non-negative. The non-squared version should all be close to 0. | |
X = np.array( | |
[ | |
[-122.27, 648.0, missing_value, 37.85], | |
[-122.27, missing_value, 2.34701493, missing_value], | |
] | |
) | |
dist_squared = nan_euclidean_distances( | |
X, missing_values=missing_value, squared=True | |
) | |
assert np.all(dist_squared >= 0) | |
dist = nan_euclidean_distances(X, missing_values=missing_value, squared=False) | |
assert_allclose(dist, 0.0) | |
def test_cosine_distances(): | |
# Check the pairwise Cosine distances computation | |
rng = np.random.RandomState(1337) | |
x = np.abs(rng.rand(910)) | |
XA = np.vstack([x, x]) | |
D = cosine_distances(XA) | |
assert_allclose(D, [[0.0, 0.0], [0.0, 0.0]], atol=1e-10) | |
# check that all elements are in [0, 2] | |
assert np.all(D >= 0.0) | |
assert np.all(D <= 2.0) | |
# check that diagonal elements are equal to 0 | |
assert_allclose(D[np.diag_indices_from(D)], [0.0, 0.0]) | |
XB = np.vstack([x, -x]) | |
D2 = cosine_distances(XB) | |
# check that all elements are in [0, 2] | |
assert np.all(D2 >= 0.0) | |
assert np.all(D2 <= 2.0) | |
# check that diagonal elements are equal to 0 and non diagonal to 2 | |
assert_allclose(D2, [[0.0, 2.0], [2.0, 0.0]]) | |
# check large random matrix | |
X = np.abs(rng.rand(1000, 5000)) | |
D = cosine_distances(X) | |
# check that diagonal elements are equal to 0 | |
assert_allclose(D[np.diag_indices_from(D)], [0.0] * D.shape[0]) | |
assert np.all(D >= 0.0) | |
assert np.all(D <= 2.0) | |
def test_haversine_distances(): | |
# Check haversine distance with distances computation | |
def slow_haversine_distances(x, y): | |
diff_lat = y[0] - x[0] | |
diff_lon = y[1] - x[1] | |
a = np.sin(diff_lat / 2) ** 2 + ( | |
np.cos(x[0]) * np.cos(y[0]) * np.sin(diff_lon / 2) ** 2 | |
) | |
c = 2 * np.arcsin(np.sqrt(a)) | |
return c | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((5, 2)) | |
Y = rng.random_sample((10, 2)) | |
D1 = np.array([[slow_haversine_distances(x, y) for y in Y] for x in X]) | |
D2 = haversine_distances(X, Y) | |
assert_allclose(D1, D2) | |
# Test haversine distance does not accept X where n_feature != 2 | |
X = rng.random_sample((10, 3)) | |
err_msg = "Haversine distance only valid in 2 dimensions" | |
with pytest.raises(ValueError, match=err_msg): | |
haversine_distances(X) | |
# Paired distances | |
def test_paired_euclidean_distances(): | |
# Check the paired Euclidean distances computation | |
X = [[0], [0]] | |
Y = [[1], [2]] | |
D = paired_euclidean_distances(X, Y) | |
assert_allclose(D, [1.0, 2.0]) | |
def test_paired_manhattan_distances(): | |
# Check the paired manhattan distances computation | |
X = [[0], [0]] | |
Y = [[1], [2]] | |
D = paired_manhattan_distances(X, Y) | |
assert_allclose(D, [1.0, 2.0]) | |
def test_paired_cosine_distances(): | |
# Check the paired manhattan distances computation | |
X = [[0], [0]] | |
Y = [[1], [2]] | |
D = paired_cosine_distances(X, Y) | |
assert_allclose(D, [0.5, 0.5]) | |
def test_chi_square_kernel(): | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((5, 4)) | |
Y = rng.random_sample((10, 4)) | |
K_add = additive_chi2_kernel(X, Y) | |
gamma = 0.1 | |
K = chi2_kernel(X, Y, gamma=gamma) | |
assert K.dtype == float | |
for i, x in enumerate(X): | |
for j, y in enumerate(Y): | |
chi2 = -np.sum((x - y) ** 2 / (x + y)) | |
chi2_exp = np.exp(gamma * chi2) | |
assert_almost_equal(K_add[i, j], chi2) | |
assert_almost_equal(K[i, j], chi2_exp) | |
# check diagonal is ones for data with itself | |
K = chi2_kernel(Y) | |
assert_array_equal(np.diag(K), 1) | |
# check off-diagonal is < 1 but > 0: | |
assert np.all(K > 0) | |
assert np.all(K - np.diag(np.diag(K)) < 1) | |
# check that float32 is preserved | |
X = rng.random_sample((5, 4)).astype(np.float32) | |
Y = rng.random_sample((10, 4)).astype(np.float32) | |
K = chi2_kernel(X, Y) | |
assert K.dtype == np.float32 | |
# check integer type gets converted, | |
# check that zeros are handled | |
X = rng.random_sample((10, 4)).astype(np.int32) | |
K = chi2_kernel(X, X) | |
assert np.isfinite(K).all() | |
assert K.dtype == float | |
# check that kernel of similar things is greater than dissimilar ones | |
X = [[0.3, 0.7], [1.0, 0]] | |
Y = [[0, 1], [0.9, 0.1]] | |
K = chi2_kernel(X, Y) | |
assert K[0, 0] > K[0, 1] | |
assert K[1, 1] > K[1, 0] | |
# test negative input | |
with pytest.raises(ValueError): | |
chi2_kernel([[0, -1]]) | |
with pytest.raises(ValueError): | |
chi2_kernel([[0, -1]], [[-1, -1]]) | |
with pytest.raises(ValueError): | |
chi2_kernel([[0, 1]], [[-1, -1]]) | |
# different n_features in X and Y | |
with pytest.raises(ValueError): | |
chi2_kernel([[0, 1]], [[0.2, 0.2, 0.6]]) | |
def test_kernel_symmetry(kernel): | |
# Valid kernels should be symmetric | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((5, 4)) | |
K = kernel(X, X) | |
assert_allclose(K, K.T, 15) | |
def test_kernel_sparse(kernel, csr_container): | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((5, 4)) | |
X_sparse = csr_container(X) | |
K = kernel(X, X) | |
K2 = kernel(X_sparse, X_sparse) | |
assert_allclose(K, K2) | |
def test_linear_kernel(): | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((5, 4)) | |
K = linear_kernel(X, X) | |
# the diagonal elements of a linear kernel are their squared norm | |
assert_allclose(K.flat[::6], [linalg.norm(x) ** 2 for x in X]) | |
def test_rbf_kernel(): | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((5, 4)) | |
K = rbf_kernel(X, X) | |
# the diagonal elements of a rbf kernel are 1 | |
assert_allclose(K.flat[::6], np.ones(5)) | |
def test_laplacian_kernel(): | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((5, 4)) | |
K = laplacian_kernel(X, X) | |
# the diagonal elements of a laplacian kernel are 1 | |
assert_allclose(np.diag(K), np.ones(5)) | |
# off-diagonal elements are < 1 but > 0: | |
assert np.all(K > 0) | |
assert np.all(K - np.diag(np.diag(K)) < 1) | |
def test_pairwise_similarity_sparse_output(metric, pairwise_func, csr_container): | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((5, 4)) | |
Y = rng.random_sample((3, 4)) | |
Xcsr = csr_container(X) | |
Ycsr = csr_container(Y) | |
# should be sparse | |
K1 = pairwise_func(Xcsr, Ycsr, dense_output=False) | |
assert issparse(K1) | |
# should be dense, and equal to K1 | |
K2 = pairwise_func(X, Y, dense_output=True) | |
assert not issparse(K2) | |
assert_allclose(K1.toarray(), K2) | |
# show the kernel output equal to the sparse.toarray() | |
K3 = pairwise_kernels(X, Y=Y, metric=metric) | |
assert_allclose(K1.toarray(), K3) | |
def test_cosine_similarity(csr_container): | |
# Test the cosine_similarity. | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((5, 4)) | |
Y = rng.random_sample((3, 4)) | |
Xcsr = csr_container(X) | |
Ycsr = csr_container(Y) | |
for X_, Y_ in ((X, None), (X, Y), (Xcsr, None), (Xcsr, Ycsr)): | |
# Test that the cosine is kernel is equal to a linear kernel when data | |
# has been previously normalized by L2-norm. | |
K1 = pairwise_kernels(X_, Y=Y_, metric="cosine") | |
X_ = normalize(X_) | |
if Y_ is not None: | |
Y_ = normalize(Y_) | |
K2 = pairwise_kernels(X_, Y=Y_, metric="linear") | |
assert_allclose(K1, K2) | |
def test_check_dense_matrices(): | |
# Ensure that pairwise array check works for dense matrices. | |
# Check that if XB is None, XB is returned as reference to XA | |
XA = np.resize(np.arange(40), (5, 8)) | |
XA_checked, XB_checked = check_pairwise_arrays(XA, None) | |
assert XA_checked is XB_checked | |
assert_array_equal(XA, XA_checked) | |
def test_check_XB_returned(): | |
# Ensure that if XA and XB are given correctly, they return as equal. | |
# Check that if XB is not None, it is returned equal. | |
# Note that the second dimension of XB is the same as XA. | |
XA = np.resize(np.arange(40), (5, 8)) | |
XB = np.resize(np.arange(32), (4, 8)) | |
XA_checked, XB_checked = check_pairwise_arrays(XA, XB) | |
assert_array_equal(XA, XA_checked) | |
assert_array_equal(XB, XB_checked) | |
XB = np.resize(np.arange(40), (5, 8)) | |
XA_checked, XB_checked = check_paired_arrays(XA, XB) | |
assert_array_equal(XA, XA_checked) | |
assert_array_equal(XB, XB_checked) | |
def test_check_different_dimensions(): | |
# Ensure an error is raised if the dimensions are different. | |
XA = np.resize(np.arange(45), (5, 9)) | |
XB = np.resize(np.arange(32), (4, 8)) | |
with pytest.raises(ValueError): | |
check_pairwise_arrays(XA, XB) | |
XB = np.resize(np.arange(4 * 9), (4, 9)) | |
with pytest.raises(ValueError): | |
check_paired_arrays(XA, XB) | |
def test_check_invalid_dimensions(): | |
# Ensure an error is raised on 1D input arrays. | |
# The modified tests are not 1D. In the old test, the array was internally | |
# converted to 2D anyways | |
XA = np.arange(45).reshape(9, 5) | |
XB = np.arange(32).reshape(4, 8) | |
with pytest.raises(ValueError): | |
check_pairwise_arrays(XA, XB) | |
XA = np.arange(45).reshape(9, 5) | |
XB = np.arange(32).reshape(4, 8) | |
with pytest.raises(ValueError): | |
check_pairwise_arrays(XA, XB) | |
def test_check_sparse_arrays(csr_container): | |
# Ensures that checks return valid sparse matrices. | |
rng = np.random.RandomState(0) | |
XA = rng.random_sample((5, 4)) | |
XA_sparse = csr_container(XA) | |
XB = rng.random_sample((5, 4)) | |
XB_sparse = csr_container(XB) | |
XA_checked, XB_checked = check_pairwise_arrays(XA_sparse, XB_sparse) | |
# compare their difference because testing csr matrices for | |
# equality with '==' does not work as expected. | |
assert issparse(XA_checked) | |
assert abs(XA_sparse - XA_checked).sum() == 0 | |
assert issparse(XB_checked) | |
assert abs(XB_sparse - XB_checked).sum() == 0 | |
XA_checked, XA_2_checked = check_pairwise_arrays(XA_sparse, XA_sparse) | |
assert issparse(XA_checked) | |
assert abs(XA_sparse - XA_checked).sum() == 0 | |
assert issparse(XA_2_checked) | |
assert abs(XA_2_checked - XA_checked).sum() == 0 | |
def tuplify(X): | |
# Turns a numpy matrix (any n-dimensional array) into tuples. | |
s = X.shape | |
if len(s) > 1: | |
# Tuplify each sub-array in the input. | |
return tuple(tuplify(row) for row in X) | |
else: | |
# Single dimension input, just return tuple of contents. | |
return tuple(r for r in X) | |
def test_check_tuple_input(): | |
# Ensures that checks return valid tuples. | |
rng = np.random.RandomState(0) | |
XA = rng.random_sample((5, 4)) | |
XA_tuples = tuplify(XA) | |
XB = rng.random_sample((5, 4)) | |
XB_tuples = tuplify(XB) | |
XA_checked, XB_checked = check_pairwise_arrays(XA_tuples, XB_tuples) | |
assert_array_equal(XA_tuples, XA_checked) | |
assert_array_equal(XB_tuples, XB_checked) | |
def test_check_preserve_type(): | |
# Ensures that type float32 is preserved. | |
XA = np.resize(np.arange(40), (5, 8)).astype(np.float32) | |
XB = np.resize(np.arange(40), (5, 8)).astype(np.float32) | |
XA_checked, XB_checked = check_pairwise_arrays(XA, None) | |
assert XA_checked.dtype == np.float32 | |
# both float32 | |
XA_checked, XB_checked = check_pairwise_arrays(XA, XB) | |
assert XA_checked.dtype == np.float32 | |
assert XB_checked.dtype == np.float32 | |
# mismatched A | |
XA_checked, XB_checked = check_pairwise_arrays(XA.astype(float), XB) | |
assert XA_checked.dtype == float | |
assert XB_checked.dtype == float | |
# mismatched B | |
XA_checked, XB_checked = check_pairwise_arrays(XA, XB.astype(float)) | |
assert XA_checked.dtype == float | |
assert XB_checked.dtype == float | |
def test_pairwise_distances_data_derived_params(n_jobs, metric, dist_function): | |
# check that pairwise_distances give the same result in sequential and | |
# parallel, when metric has data-derived parameters. | |
with config_context(working_memory=0.1): # to have more than 1 chunk | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((100, 10)) | |
expected_dist = squareform(pdist(X, metric=metric)) | |
dist = np.vstack(tuple(dist_function(X, metric=metric, n_jobs=n_jobs))) | |
assert_allclose(dist, expected_dist) | |
def test_pairwise_distances_data_derived_params_error(metric): | |
# check that pairwise_distances raises an error when Y is passed but | |
# metric has data-derived params that are not provided by the user. | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((100, 10)) | |
Y = rng.random_sample((100, 10)) | |
with pytest.raises( | |
ValueError, | |
match=rf"The '(V|VI)' parameter is required for the " rf"{metric} metric", | |
): | |
pairwise_distances(X, Y, metric=metric) | |
def test_numeric_pairwise_distances_datatypes(metric, global_dtype, y_is_x): | |
# Check that pairwise distances gives the same result as pdist and cdist | |
# regardless of input datatype when using any scipy metric for comparing | |
# numeric vectors | |
# | |
# This test is necessary because pairwise_distances used to throw an | |
# error when using metric='seuclidean' and the input data was not | |
# of type np.float64 (#15730) | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((5, 4)).astype(global_dtype, copy=False) | |
params = {} | |
if y_is_x: | |
Y = X | |
expected_dist = squareform(pdist(X, metric=metric)) | |
else: | |
Y = rng.random_sample((5, 4)).astype(global_dtype, copy=False) | |
expected_dist = cdist(X, Y, metric=metric) | |
# precompute parameters for seuclidean & mahalanobis when x is not y | |
if metric == "seuclidean": | |
params = {"V": np.var(np.vstack([X, Y]), axis=0, ddof=1, dtype=np.float64)} | |
elif metric == "mahalanobis": | |
params = {"VI": np.linalg.inv(np.cov(np.vstack([X, Y]).T)).T} | |
dist = pairwise_distances(X, Y, metric=metric, **params) | |
assert_allclose(dist, expected_dist) | |
def test_sparse_manhattan_readonly_dataset(csr_container): | |
# Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/7981 | |
matrices1 = [csr_container(np.ones((5, 5)))] | |
matrices2 = [csr_container(np.ones((5, 5)))] | |
# Joblib memory maps datasets which makes them read-only. | |
# The following call was reporting as failing in #7981, but this must pass. | |
Parallel(n_jobs=2, max_nbytes=0)( | |
delayed(manhattan_distances)(m1, m2) for m1, m2 in zip(matrices1, matrices2) | |
) | |