peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/svm
/tests
/test_bounds.py
import numpy as np | |
import pytest | |
from scipy import stats | |
from sklearn.linear_model import LogisticRegression | |
from sklearn.svm import LinearSVC | |
from sklearn.svm._bounds import l1_min_c | |
from sklearn.svm._newrand import bounded_rand_int_wrap, set_seed_wrap | |
from sklearn.utils.fixes import CSR_CONTAINERS | |
dense_X = [[-1, 0], [0, 1], [1, 1], [1, 1]] | |
Y1 = [0, 1, 1, 1] | |
Y2 = [2, 1, 0, 0] | |
def test_l1_min_c(X_container, loss, Y_label, intercept_label): | |
Ys = {"two-classes": Y1, "multi-class": Y2} | |
intercepts = { | |
"no-intercept": {"fit_intercept": False}, | |
"fit-intercept": {"fit_intercept": True, "intercept_scaling": 10}, | |
} | |
X = X_container(dense_X) | |
Y = Ys[Y_label] | |
intercept_params = intercepts[intercept_label] | |
check_l1_min_c(X, Y, loss, **intercept_params) | |
def check_l1_min_c(X, y, loss, fit_intercept=True, intercept_scaling=1.0): | |
min_c = l1_min_c( | |
X, | |
y, | |
loss=loss, | |
fit_intercept=fit_intercept, | |
intercept_scaling=intercept_scaling, | |
) | |
clf = { | |
"log": LogisticRegression(penalty="l1", solver="liblinear"), | |
"squared_hinge": LinearSVC(loss="squared_hinge", penalty="l1", dual=False), | |
}[loss] | |
clf.fit_intercept = fit_intercept | |
clf.intercept_scaling = intercept_scaling | |
clf.C = min_c | |
clf.fit(X, y) | |
assert (np.asarray(clf.coef_) == 0).all() | |
assert (np.asarray(clf.intercept_) == 0).all() | |
clf.C = min_c * 1.01 | |
clf.fit(X, y) | |
assert (np.asarray(clf.coef_) != 0).any() or (np.asarray(clf.intercept_) != 0).any() | |
def test_ill_posed_min_c(): | |
X = [[0, 0], [0, 0]] | |
y = [0, 1] | |
with pytest.raises(ValueError): | |
l1_min_c(X, y) | |
_MAX_UNSIGNED_INT = 4294967295 | |
def test_newrand_default(): | |
"""Test that bounded_rand_int_wrap without seeding respects the range | |
Note this test should pass either if executed alone, or in conjunctions | |
with other tests that call set_seed explicit in any order: it checks | |
invariants on the RNG instead of specific values. | |
""" | |
generated = [bounded_rand_int_wrap(100) for _ in range(10)] | |
assert all(0 <= x < 100 for x in generated) | |
assert not all(x == generated[0] for x in generated) | |
def test_newrand_set_seed(seed, expected): | |
"""Test that `set_seed` produces deterministic results""" | |
set_seed_wrap(seed) | |
generated = bounded_rand_int_wrap(100) | |
assert generated == expected | |
def test_newrand_set_seed_overflow(seed): | |
"""Test that `set_seed_wrap` is defined for unsigned 32bits ints""" | |
with pytest.raises(OverflowError): | |
set_seed_wrap(seed) | |
def test_newrand_bounded_rand_int(range_, n_pts): | |
"""Test that `bounded_rand_int` follows a uniform distribution""" | |
# XXX: this test is very seed sensitive: either it is wrong (too strict?) | |
# or the wrapped RNG is not uniform enough, at least on some platforms. | |
set_seed_wrap(42) | |
n_iter = 100 | |
ks_pvals = [] | |
uniform_dist = stats.uniform(loc=0, scale=range_) | |
# perform multiple samplings to make chance of outlier sampling negligible | |
for _ in range(n_iter): | |
# Deterministic random sampling | |
sample = [bounded_rand_int_wrap(range_) for _ in range(n_pts)] | |
res = stats.kstest(sample, uniform_dist.cdf) | |
ks_pvals.append(res.pvalue) | |
# Null hypothesis = samples come from an uniform distribution. | |
# Under the null hypothesis, p-values should be uniformly distributed | |
# and not concentrated on low values | |
# (this may seem counter-intuitive but is backed by multiple refs) | |
# So we can do two checks: | |
# (1) check uniformity of p-values | |
uniform_p_vals_dist = stats.uniform(loc=0, scale=1) | |
res_pvals = stats.kstest(ks_pvals, uniform_p_vals_dist.cdf) | |
assert res_pvals.pvalue > 0.05, ( | |
"Null hypothesis rejected: generated random numbers are not uniform." | |
" Details: the (meta) p-value of the test of uniform distribution" | |
f" of p-values is {res_pvals.pvalue} which is not > 0.05" | |
) | |
# (2) (safety belt) check that 90% of p-values are above 0.05 | |
min_10pct_pval = np.percentile(ks_pvals, q=10) | |
# lower 10th quantile pvalue <= 0.05 means that the test rejects the | |
# null hypothesis that the sample came from the uniform distribution | |
assert min_10pct_pval > 0.05, ( | |
"Null hypothesis rejected: generated random numbers are not uniform. " | |
f"Details: lower 10th quantile p-value of {min_10pct_pval} not > 0.05." | |
) | |
def test_newrand_bounded_rand_int_limits(range_): | |
"""Test that `bounded_rand_int_wrap` is defined for unsigned 32bits ints""" | |
with pytest.raises(OverflowError): | |
bounded_rand_int_wrap(range_) | |