peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/svm
/tests
/test_sparse.py
import numpy as np | |
import pytest | |
from scipy import sparse | |
from sklearn import base, datasets, linear_model, svm | |
from sklearn.datasets import load_digits, make_blobs, make_classification | |
from sklearn.exceptions import ConvergenceWarning | |
from sklearn.svm.tests import test_svm | |
from sklearn.utils._testing import ( | |
assert_allclose, | |
assert_array_almost_equal, | |
assert_array_equal, | |
ignore_warnings, | |
skip_if_32bit, | |
) | |
from sklearn.utils.extmath import safe_sparse_dot | |
from sklearn.utils.fixes import ( | |
CSR_CONTAINERS, | |
DOK_CONTAINERS, | |
LIL_CONTAINERS, | |
) | |
# test sample 1 | |
X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) | |
Y = [1, 1, 1, 2, 2, 2] | |
T = np.array([[-1, -1], [2, 2], [3, 2]]) | |
true_result = [1, 2, 2] | |
# test sample 2 | |
X2 = np.array( | |
[ | |
[0, 0, 0], | |
[1, 1, 1], | |
[2, 0, 0], | |
[0, 0, 2], | |
[3, 3, 3], | |
] | |
) | |
Y2 = [1, 2, 2, 2, 3] | |
T2 = np.array([[-1, -1, -1], [1, 1, 1], [2, 2, 2]]) | |
true_result2 = [1, 2, 3] | |
iris = datasets.load_iris() | |
rng = np.random.RandomState(0) | |
perm = rng.permutation(iris.target.size) | |
iris.data = iris.data[perm] | |
iris.target = iris.target[perm] | |
X_blobs, y_blobs = make_blobs(n_samples=100, centers=10, random_state=0) | |
def check_svm_model_equal(dense_svm, X_train, y_train, X_test): | |
# Use the original svm model for dense fit and clone an exactly same | |
# svm model for sparse fit | |
sparse_svm = base.clone(dense_svm) | |
dense_svm.fit(X_train.toarray(), y_train) | |
if sparse.issparse(X_test): | |
X_test_dense = X_test.toarray() | |
else: | |
X_test_dense = X_test | |
sparse_svm.fit(X_train, y_train) | |
assert sparse.issparse(sparse_svm.support_vectors_) | |
assert sparse.issparse(sparse_svm.dual_coef_) | |
assert_allclose(dense_svm.support_vectors_, sparse_svm.support_vectors_.toarray()) | |
assert_allclose(dense_svm.dual_coef_, sparse_svm.dual_coef_.toarray()) | |
if dense_svm.kernel == "linear": | |
assert sparse.issparse(sparse_svm.coef_) | |
assert_array_almost_equal(dense_svm.coef_, sparse_svm.coef_.toarray()) | |
assert_allclose(dense_svm.support_, sparse_svm.support_) | |
assert_allclose(dense_svm.predict(X_test_dense), sparse_svm.predict(X_test)) | |
assert_array_almost_equal( | |
dense_svm.decision_function(X_test_dense), sparse_svm.decision_function(X_test) | |
) | |
assert_array_almost_equal( | |
dense_svm.decision_function(X_test_dense), | |
sparse_svm.decision_function(X_test_dense), | |
) | |
if isinstance(dense_svm, svm.OneClassSVM): | |
msg = "cannot use sparse input in 'OneClassSVM' trained on dense data" | |
else: | |
assert_array_almost_equal( | |
dense_svm.predict_proba(X_test_dense), | |
sparse_svm.predict_proba(X_test), | |
decimal=4, | |
) | |
msg = "cannot use sparse input in 'SVC' trained on dense data" | |
if sparse.issparse(X_test): | |
with pytest.raises(ValueError, match=msg): | |
dense_svm.predict(X_test) | |
def test_svc(X_train, y_train, X_test, kernel, sparse_container): | |
"""Check that sparse SVC gives the same result as SVC.""" | |
X_train = sparse_container(X_train) | |
clf = svm.SVC( | |
gamma=1, | |
kernel=kernel, | |
probability=True, | |
random_state=0, | |
decision_function_shape="ovo", | |
) | |
check_svm_model_equal(clf, X_train, y_train, X_test) | |
def test_unsorted_indices(csr_container): | |
# test that the result with sorted and unsorted indices in csr is the same | |
# we use a subset of digits as iris, blobs or make_classification didn't | |
# show the problem | |
X, y = load_digits(return_X_y=True) | |
X_test = csr_container(X[50:100]) | |
X, y = X[:50], y[:50] | |
X_sparse = csr_container(X) | |
coef_dense = ( | |
svm.SVC(kernel="linear", probability=True, random_state=0).fit(X, y).coef_ | |
) | |
sparse_svc = svm.SVC(kernel="linear", probability=True, random_state=0).fit( | |
X_sparse, y | |
) | |
coef_sorted = sparse_svc.coef_ | |
# make sure dense and sparse SVM give the same result | |
assert_allclose(coef_dense, coef_sorted.toarray()) | |
# reverse each row's indices | |
def scramble_indices(X): | |
new_data = [] | |
new_indices = [] | |
for i in range(1, len(X.indptr)): | |
row_slice = slice(*X.indptr[i - 1 : i + 1]) | |
new_data.extend(X.data[row_slice][::-1]) | |
new_indices.extend(X.indices[row_slice][::-1]) | |
return csr_container((new_data, new_indices, X.indptr), shape=X.shape) | |
X_sparse_unsorted = scramble_indices(X_sparse) | |
X_test_unsorted = scramble_indices(X_test) | |
assert not X_sparse_unsorted.has_sorted_indices | |
assert not X_test_unsorted.has_sorted_indices | |
unsorted_svc = svm.SVC(kernel="linear", probability=True, random_state=0).fit( | |
X_sparse_unsorted, y | |
) | |
coef_unsorted = unsorted_svc.coef_ | |
# make sure unsorted indices give same result | |
assert_allclose(coef_unsorted.toarray(), coef_sorted.toarray()) | |
assert_allclose( | |
sparse_svc.predict_proba(X_test_unsorted), sparse_svc.predict_proba(X_test) | |
) | |
def test_svc_with_custom_kernel(lil_container): | |
def kfunc(x, y): | |
return safe_sparse_dot(x, y.T) | |
X_sp = lil_container(X) | |
clf_lin = svm.SVC(kernel="linear").fit(X_sp, Y) | |
clf_mylin = svm.SVC(kernel=kfunc).fit(X_sp, Y) | |
assert_array_equal(clf_lin.predict(X_sp), clf_mylin.predict(X_sp)) | |
def test_svc_iris(csr_container, kernel): | |
# Test the sparse SVC with the iris dataset | |
iris_data_sp = csr_container(iris.data) | |
sp_clf = svm.SVC(kernel=kernel).fit(iris_data_sp, iris.target) | |
clf = svm.SVC(kernel=kernel).fit(iris.data, iris.target) | |
assert_allclose(clf.support_vectors_, sp_clf.support_vectors_.toarray()) | |
assert_allclose(clf.dual_coef_, sp_clf.dual_coef_.toarray()) | |
assert_allclose(clf.predict(iris.data), sp_clf.predict(iris_data_sp)) | |
if kernel == "linear": | |
assert_allclose(clf.coef_, sp_clf.coef_.toarray()) | |
def test_sparse_decision_function(csr_container): | |
# Test decision_function | |
# Sanity check, test that decision_function implemented in python | |
# returns the same as the one in libsvm | |
# multi class: | |
iris_data_sp = csr_container(iris.data) | |
svc = svm.SVC(kernel="linear", C=0.1, decision_function_shape="ovo") | |
clf = svc.fit(iris_data_sp, iris.target) | |
dec = safe_sparse_dot(iris_data_sp, clf.coef_.T) + clf.intercept_ | |
assert_allclose(dec, clf.decision_function(iris_data_sp)) | |
# binary: | |
clf.fit(X, Y) | |
dec = np.dot(X, clf.coef_.T) + clf.intercept_ | |
prediction = clf.predict(X) | |
assert_allclose(dec.ravel(), clf.decision_function(X)) | |
assert_allclose( | |
prediction, clf.classes_[(clf.decision_function(X) > 0).astype(int).ravel()] | |
) | |
expected = np.array([-1.0, -0.66, -1.0, 0.66, 1.0, 1.0]) | |
assert_array_almost_equal(clf.decision_function(X), expected, decimal=2) | |
def test_error(lil_container): | |
# Test that it gives proper exception on deficient input | |
clf = svm.SVC() | |
X_sp = lil_container(X) | |
Y2 = Y[:-1] # wrong dimensions for labels | |
with pytest.raises(ValueError): | |
clf.fit(X_sp, Y2) | |
clf.fit(X_sp, Y) | |
assert_array_equal(clf.predict(T), true_result) | |
def test_linearsvc(lil_container, dok_container): | |
# Similar to test_SVC | |
X_sp = lil_container(X) | |
X2_sp = dok_container(X2) | |
clf = svm.LinearSVC(dual="auto", random_state=0).fit(X, Y) | |
sp_clf = svm.LinearSVC(dual="auto", random_state=0).fit(X_sp, Y) | |
assert sp_clf.fit_intercept | |
assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4) | |
assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4) | |
assert_allclose(clf.predict(X), sp_clf.predict(X_sp)) | |
clf.fit(X2, Y2) | |
sp_clf.fit(X2_sp, Y2) | |
assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4) | |
assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4) | |
def test_linearsvc_iris(csr_container): | |
# Test the sparse LinearSVC with the iris dataset | |
iris_data_sp = csr_container(iris.data) | |
sp_clf = svm.LinearSVC(dual="auto", random_state=0).fit(iris_data_sp, iris.target) | |
clf = svm.LinearSVC(dual="auto", random_state=0).fit(iris.data, iris.target) | |
assert clf.fit_intercept == sp_clf.fit_intercept | |
assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=1) | |
assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=1) | |
assert_allclose(clf.predict(iris.data), sp_clf.predict(iris_data_sp)) | |
# check decision_function | |
pred = np.argmax(sp_clf.decision_function(iris_data_sp), axis=1) | |
assert_allclose(pred, clf.predict(iris.data)) | |
# sparsify the coefficients on both models and check that they still | |
# produce the same results | |
clf.sparsify() | |
assert_array_equal(pred, clf.predict(iris_data_sp)) | |
sp_clf.sparsify() | |
assert_array_equal(pred, sp_clf.predict(iris_data_sp)) | |
def test_weight(csr_container): | |
# Test class weights | |
X_, y_ = make_classification( | |
n_samples=200, n_features=100, weights=[0.833, 0.167], random_state=0 | |
) | |
X_ = csr_container(X_) | |
for clf in ( | |
linear_model.LogisticRegression(), | |
svm.LinearSVC(dual="auto", random_state=0), | |
svm.SVC(), | |
): | |
clf.set_params(class_weight={0: 5}) | |
clf.fit(X_[:180], y_[:180]) | |
y_pred = clf.predict(X_[180:]) | |
assert np.sum(y_pred == y_[180:]) >= 11 | |
def test_sample_weights(lil_container): | |
# Test weights on individual samples | |
X_sp = lil_container(X) | |
clf = svm.SVC() | |
clf.fit(X_sp, Y) | |
assert_array_equal(clf.predict([X[2]]), [1.0]) | |
sample_weight = [0.1] * 3 + [10] * 3 | |
clf.fit(X_sp, Y, sample_weight=sample_weight) | |
assert_array_equal(clf.predict([X[2]]), [2.0]) | |
def test_sparse_liblinear_intercept_handling(): | |
# Test that sparse liblinear honours intercept_scaling param | |
test_svm.test_dense_liblinear_intercept_handling(svm.LinearSVC) | |
def test_sparse_oneclasssvm(X_train, y_train, X_test, kernel, sparse_container): | |
# Check that sparse OneClassSVM gives the same result as dense OneClassSVM | |
X_train = sparse_container(X_train) | |
clf = svm.OneClassSVM(gamma=1, kernel=kernel) | |
check_svm_model_equal(clf, X_train, y_train, X_test) | |
def test_sparse_realdata(csr_container): | |
# Test on a subset from the 20newsgroups dataset. | |
# This catches some bugs if input is not correctly converted into | |
# sparse format or weights are not correctly initialized. | |
data = np.array([0.03771744, 0.1003567, 0.01174647, 0.027069]) | |
# SVC does not support large sparse, so we specify int32 indices | |
# In this case, `csr_matrix` automatically uses int32 regardless of the dtypes of | |
# `indices` and `indptr` but `csr_array` may or may not use the same dtype as | |
# `indices` and `indptr`, which would be int64 if not specified | |
indices = np.array([6, 5, 35, 31], dtype=np.int32) | |
indptr = np.array([0] * 8 + [1] * 32 + [2] * 38 + [4] * 3, dtype=np.int32) | |
X = csr_container((data, indices, indptr)) | |
y = np.array( | |
[ | |
1.0, | |
0.0, | |
2.0, | |
2.0, | |
1.0, | |
1.0, | |
1.0, | |
2.0, | |
2.0, | |
0.0, | |
1.0, | |
2.0, | |
2.0, | |
0.0, | |
2.0, | |
0.0, | |
3.0, | |
0.0, | |
3.0, | |
0.0, | |
1.0, | |
1.0, | |
3.0, | |
2.0, | |
3.0, | |
2.0, | |
0.0, | |
3.0, | |
1.0, | |
0.0, | |
2.0, | |
1.0, | |
2.0, | |
0.0, | |
1.0, | |
0.0, | |
2.0, | |
3.0, | |
1.0, | |
3.0, | |
0.0, | |
1.0, | |
0.0, | |
0.0, | |
2.0, | |
0.0, | |
1.0, | |
2.0, | |
2.0, | |
2.0, | |
3.0, | |
2.0, | |
0.0, | |
3.0, | |
2.0, | |
1.0, | |
2.0, | |
3.0, | |
2.0, | |
2.0, | |
0.0, | |
1.0, | |
0.0, | |
1.0, | |
2.0, | |
3.0, | |
0.0, | |
0.0, | |
2.0, | |
2.0, | |
1.0, | |
3.0, | |
1.0, | |
1.0, | |
0.0, | |
1.0, | |
2.0, | |
1.0, | |
1.0, | |
3.0, | |
] | |
) | |
clf = svm.SVC(kernel="linear").fit(X.toarray(), y) | |
sp_clf = svm.SVC(kernel="linear").fit(X.tocoo(), y) | |
assert_array_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray()) | |
assert_array_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray()) | |
def test_sparse_svc_clone_with_callable_kernel(lil_container): | |
# Test that the "dense_fit" is called even though we use sparse input | |
# meaning that everything works fine. | |
a = svm.SVC(C=1, kernel=lambda x, y: x @ y.T, probability=True, random_state=0) | |
b = base.clone(a) | |
X_sp = lil_container(X) | |
b.fit(X_sp, Y) | |
pred = b.predict(X_sp) | |
b.predict_proba(X_sp) | |
dense_svm = svm.SVC( | |
C=1, kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0 | |
) | |
pred_dense = dense_svm.fit(X, Y).predict(X) | |
assert_array_equal(pred_dense, pred) | |
# b.decision_function(X_sp) # XXX : should be supported | |
def test_timeout(lil_container): | |
sp = svm.SVC( | |
C=1, kernel=lambda x, y: x @ y.T, probability=True, random_state=0, max_iter=1 | |
) | |
warning_msg = ( | |
r"Solver terminated early \(max_iter=1\). Consider pre-processing " | |
r"your data with StandardScaler or MinMaxScaler." | |
) | |
with pytest.warns(ConvergenceWarning, match=warning_msg): | |
sp.fit(lil_container(X), Y) | |
def test_consistent_proba(): | |
a = svm.SVC(probability=True, max_iter=1, random_state=0) | |
with ignore_warnings(category=ConvergenceWarning): | |
proba_1 = a.fit(X, Y).predict_proba(X) | |
a = svm.SVC(probability=True, max_iter=1, random_state=0) | |
with ignore_warnings(category=ConvergenceWarning): | |
proba_2 = a.fit(X, Y).predict_proba(X) | |
assert_allclose(proba_1, proba_2) | |