peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/tests
/test_isotonic.py
import copy | |
import pickle | |
import warnings | |
import numpy as np | |
import pytest | |
from scipy.special import expit | |
import sklearn | |
from sklearn.datasets import make_regression | |
from sklearn.isotonic import ( | |
IsotonicRegression, | |
_make_unique, | |
check_increasing, | |
isotonic_regression, | |
) | |
from sklearn.utils import shuffle | |
from sklearn.utils._testing import ( | |
assert_allclose, | |
assert_array_almost_equal, | |
assert_array_equal, | |
) | |
from sklearn.utils.validation import check_array | |
def test_permutation_invariance(): | |
# check that fit is permutation invariant. | |
# regression test of missing sorting of sample-weights | |
ir = IsotonicRegression() | |
x = [1, 2, 3, 4, 5, 6, 7] | |
y = [1, 41, 51, 1, 2, 5, 24] | |
sample_weight = [1, 2, 3, 4, 5, 6, 7] | |
x_s, y_s, sample_weight_s = shuffle(x, y, sample_weight, random_state=0) | |
y_transformed = ir.fit_transform(x, y, sample_weight=sample_weight) | |
y_transformed_s = ir.fit(x_s, y_s, sample_weight=sample_weight_s).transform(x) | |
assert_array_equal(y_transformed, y_transformed_s) | |
def test_check_increasing_small_number_of_samples(): | |
x = [0, 1, 2] | |
y = [1, 1.1, 1.05] | |
with warnings.catch_warnings(): | |
warnings.simplefilter("error", UserWarning) | |
is_increasing = check_increasing(x, y) | |
assert is_increasing | |
def test_check_increasing_up(): | |
x = [0, 1, 2, 3, 4, 5] | |
y = [0, 1.5, 2.77, 8.99, 8.99, 50] | |
# Check that we got increasing=True and no warnings | |
with warnings.catch_warnings(): | |
warnings.simplefilter("error", UserWarning) | |
is_increasing = check_increasing(x, y) | |
assert is_increasing | |
def test_check_increasing_up_extreme(): | |
x = [0, 1, 2, 3, 4, 5] | |
y = [0, 1, 2, 3, 4, 5] | |
# Check that we got increasing=True and no warnings | |
with warnings.catch_warnings(): | |
warnings.simplefilter("error", UserWarning) | |
is_increasing = check_increasing(x, y) | |
assert is_increasing | |
def test_check_increasing_down(): | |
x = [0, 1, 2, 3, 4, 5] | |
y = [0, -1.5, -2.77, -8.99, -8.99, -50] | |
# Check that we got increasing=False and no warnings | |
with warnings.catch_warnings(): | |
warnings.simplefilter("error", UserWarning) | |
is_increasing = check_increasing(x, y) | |
assert not is_increasing | |
def test_check_increasing_down_extreme(): | |
x = [0, 1, 2, 3, 4, 5] | |
y = [0, -1, -2, -3, -4, -5] | |
# Check that we got increasing=False and no warnings | |
with warnings.catch_warnings(): | |
warnings.simplefilter("error", UserWarning) | |
is_increasing = check_increasing(x, y) | |
assert not is_increasing | |
def test_check_ci_warn(): | |
x = [0, 1, 2, 3, 4, 5] | |
y = [0, -1, 2, -3, 4, -5] | |
# Check that we got increasing=False and CI interval warning | |
msg = "interval" | |
with pytest.warns(UserWarning, match=msg): | |
is_increasing = check_increasing(x, y) | |
assert not is_increasing | |
def test_isotonic_regression(): | |
y = np.array([3, 7, 5, 9, 8, 7, 10]) | |
y_ = np.array([3, 6, 6, 8, 8, 8, 10]) | |
assert_array_equal(y_, isotonic_regression(y)) | |
y = np.array([10, 0, 2]) | |
y_ = np.array([4, 4, 4]) | |
assert_array_equal(y_, isotonic_regression(y)) | |
x = np.arange(len(y)) | |
ir = IsotonicRegression(y_min=0.0, y_max=1.0) | |
ir.fit(x, y) | |
assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y)) | |
assert_array_equal(ir.transform(x), ir.predict(x)) | |
# check that it is immune to permutation | |
perm = np.random.permutation(len(y)) | |
ir = IsotonicRegression(y_min=0.0, y_max=1.0) | |
assert_array_equal(ir.fit_transform(x[perm], y[perm]), ir.fit_transform(x, y)[perm]) | |
assert_array_equal(ir.transform(x[perm]), ir.transform(x)[perm]) | |
# check we don't crash when all x are equal: | |
ir = IsotonicRegression() | |
assert_array_equal(ir.fit_transform(np.ones(len(x)), y), np.mean(y)) | |
def test_isotonic_regression_ties_min(): | |
# Setup examples with ties on minimum | |
x = [1, 1, 2, 3, 4, 5] | |
y = [1, 2, 3, 4, 5, 6] | |
y_true = [1.5, 1.5, 3, 4, 5, 6] | |
# Check that we get identical results for fit/transform and fit_transform | |
ir = IsotonicRegression() | |
ir.fit(x, y) | |
assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y)) | |
assert_array_equal(y_true, ir.fit_transform(x, y)) | |
def test_isotonic_regression_ties_max(): | |
# Setup examples with ties on maximum | |
x = [1, 2, 3, 4, 5, 5] | |
y = [1, 2, 3, 4, 5, 6] | |
y_true = [1, 2, 3, 4, 5.5, 5.5] | |
# Check that we get identical results for fit/transform and fit_transform | |
ir = IsotonicRegression() | |
ir.fit(x, y) | |
assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y)) | |
assert_array_equal(y_true, ir.fit_transform(x, y)) | |
def test_isotonic_regression_ties_secondary_(): | |
""" | |
Test isotonic regression fit, transform and fit_transform | |
against the "secondary" ties method and "pituitary" data from R | |
"isotone" package, as detailed in: J. d. Leeuw, K. Hornik, P. Mair, | |
Isotone Optimization in R: Pool-Adjacent-Violators Algorithm | |
(PAVA) and Active Set Methods | |
Set values based on pituitary example and | |
the following R command detailed in the paper above: | |
> library("isotone") | |
> data("pituitary") | |
> res1 <- gpava(pituitary$age, pituitary$size, ties="secondary") | |
> res1$x | |
`isotone` version: 1.0-2, 2014-09-07 | |
R version: R version 3.1.1 (2014-07-10) | |
""" | |
x = [8, 8, 8, 10, 10, 10, 12, 12, 12, 14, 14] | |
y = [21, 23.5, 23, 24, 21, 25, 21.5, 22, 19, 23.5, 25] | |
y_true = [ | |
22.22222, | |
22.22222, | |
22.22222, | |
22.22222, | |
22.22222, | |
22.22222, | |
22.22222, | |
22.22222, | |
22.22222, | |
24.25, | |
24.25, | |
] | |
# Check fit, transform and fit_transform | |
ir = IsotonicRegression() | |
ir.fit(x, y) | |
assert_array_almost_equal(ir.transform(x), y_true, 4) | |
assert_array_almost_equal(ir.fit_transform(x, y), y_true, 4) | |
def test_isotonic_regression_with_ties_in_differently_sized_groups(): | |
""" | |
Non-regression test to handle issue 9432: | |
https://github.com/scikit-learn/scikit-learn/issues/9432 | |
Compare against output in R: | |
> library("isotone") | |
> x <- c(0, 1, 1, 2, 3, 4) | |
> y <- c(0, 0, 1, 0, 0, 1) | |
> res1 <- gpava(x, y, ties="secondary") | |
> res1$x | |
`isotone` version: 1.1-0, 2015-07-24 | |
R version: R version 3.3.2 (2016-10-31) | |
""" | |
x = np.array([0, 1, 1, 2, 3, 4]) | |
y = np.array([0, 0, 1, 0, 0, 1]) | |
y_true = np.array([0.0, 0.25, 0.25, 0.25, 0.25, 1.0]) | |
ir = IsotonicRegression() | |
ir.fit(x, y) | |
assert_array_almost_equal(ir.transform(x), y_true) | |
assert_array_almost_equal(ir.fit_transform(x, y), y_true) | |
def test_isotonic_regression_reversed(): | |
y = np.array([10, 9, 10, 7, 6, 6.1, 5]) | |
y_ = IsotonicRegression(increasing=False).fit_transform(np.arange(len(y)), y) | |
assert_array_equal(np.ones(y_[:-1].shape), ((y_[:-1] - y_[1:]) >= 0)) | |
def test_isotonic_regression_auto_decreasing(): | |
# Set y and x for decreasing | |
y = np.array([10, 9, 10, 7, 6, 6.1, 5]) | |
x = np.arange(len(y)) | |
# Create model and fit_transform | |
ir = IsotonicRegression(increasing="auto") | |
with warnings.catch_warnings(record=True) as w: | |
warnings.simplefilter("always") | |
y_ = ir.fit_transform(x, y) | |
# work-around for pearson divide warnings in scipy <= 0.17.0 | |
assert all(["invalid value encountered in " in str(warn.message) for warn in w]) | |
# Check that relationship decreases | |
is_increasing = y_[0] < y_[-1] | |
assert not is_increasing | |
def test_isotonic_regression_auto_increasing(): | |
# Set y and x for decreasing | |
y = np.array([5, 6.1, 6, 7, 10, 9, 10]) | |
x = np.arange(len(y)) | |
# Create model and fit_transform | |
ir = IsotonicRegression(increasing="auto") | |
with warnings.catch_warnings(record=True) as w: | |
warnings.simplefilter("always") | |
y_ = ir.fit_transform(x, y) | |
# work-around for pearson divide warnings in scipy <= 0.17.0 | |
assert all(["invalid value encountered in " in str(warn.message) for warn in w]) | |
# Check that relationship increases | |
is_increasing = y_[0] < y_[-1] | |
assert is_increasing | |
def test_assert_raises_exceptions(): | |
ir = IsotonicRegression() | |
rng = np.random.RandomState(42) | |
msg = "Found input variables with inconsistent numbers of samples" | |
with pytest.raises(ValueError, match=msg): | |
ir.fit([0, 1, 2], [5, 7, 3], [0.1, 0.6]) | |
with pytest.raises(ValueError, match=msg): | |
ir.fit([0, 1, 2], [5, 7]) | |
msg = "X should be a 1d array" | |
with pytest.raises(ValueError, match=msg): | |
ir.fit(rng.randn(3, 10), [0, 1, 2]) | |
msg = "Isotonic regression input X should be a 1d array" | |
with pytest.raises(ValueError, match=msg): | |
ir.transform(rng.randn(3, 10)) | |
def test_isotonic_sample_weight_parameter_default_value(): | |
# check if default value of sample_weight parameter is one | |
ir = IsotonicRegression() | |
# random test data | |
rng = np.random.RandomState(42) | |
n = 100 | |
x = np.arange(n) | |
y = rng.randint(-50, 50, size=(n,)) + 50.0 * np.log(1 + np.arange(n)) | |
# check if value is correctly used | |
weights = np.ones(n) | |
y_set_value = ir.fit_transform(x, y, sample_weight=weights) | |
y_default_value = ir.fit_transform(x, y) | |
assert_array_equal(y_set_value, y_default_value) | |
def test_isotonic_min_max_boundaries(): | |
# check if min value is used correctly | |
ir = IsotonicRegression(y_min=2, y_max=4) | |
n = 6 | |
x = np.arange(n) | |
y = np.arange(n) | |
y_test = [2, 2, 2, 3, 4, 4] | |
y_result = np.round(ir.fit_transform(x, y)) | |
assert_array_equal(y_result, y_test) | |
def test_isotonic_sample_weight(): | |
ir = IsotonicRegression() | |
x = [1, 2, 3, 4, 5, 6, 7] | |
y = [1, 41, 51, 1, 2, 5, 24] | |
sample_weight = [1, 2, 3, 4, 5, 6, 7] | |
expected_y = [1, 13.95, 13.95, 13.95, 13.95, 13.95, 24] | |
received_y = ir.fit_transform(x, y, sample_weight=sample_weight) | |
assert_array_equal(expected_y, received_y) | |
def test_isotonic_regression_oob_raise(): | |
# Set y and x | |
y = np.array([3, 7, 5, 9, 8, 7, 10]) | |
x = np.arange(len(y)) | |
# Create model and fit | |
ir = IsotonicRegression(increasing="auto", out_of_bounds="raise") | |
ir.fit(x, y) | |
# Check that an exception is thrown | |
msg = "in x_new is below the interpolation range" | |
with pytest.raises(ValueError, match=msg): | |
ir.predict([min(x) - 10, max(x) + 10]) | |
def test_isotonic_regression_oob_clip(): | |
# Set y and x | |
y = np.array([3, 7, 5, 9, 8, 7, 10]) | |
x = np.arange(len(y)) | |
# Create model and fit | |
ir = IsotonicRegression(increasing="auto", out_of_bounds="clip") | |
ir.fit(x, y) | |
# Predict from training and test x and check that min/max match. | |
y1 = ir.predict([min(x) - 10, max(x) + 10]) | |
y2 = ir.predict(x) | |
assert max(y1) == max(y2) | |
assert min(y1) == min(y2) | |
def test_isotonic_regression_oob_nan(): | |
# Set y and x | |
y = np.array([3, 7, 5, 9, 8, 7, 10]) | |
x = np.arange(len(y)) | |
# Create model and fit | |
ir = IsotonicRegression(increasing="auto", out_of_bounds="nan") | |
ir.fit(x, y) | |
# Predict from training and test x and check that we have two NaNs. | |
y1 = ir.predict([min(x) - 10, max(x) + 10]) | |
assert sum(np.isnan(y1)) == 2 | |
def test_isotonic_regression_pickle(): | |
y = np.array([3, 7, 5, 9, 8, 7, 10]) | |
x = np.arange(len(y)) | |
# Create model and fit | |
ir = IsotonicRegression(increasing="auto", out_of_bounds="clip") | |
ir.fit(x, y) | |
ir_ser = pickle.dumps(ir, pickle.HIGHEST_PROTOCOL) | |
ir2 = pickle.loads(ir_ser) | |
np.testing.assert_array_equal(ir.predict(x), ir2.predict(x)) | |
def test_isotonic_duplicate_min_entry(): | |
x = [0, 0, 1] | |
y = [0, 0, 1] | |
ir = IsotonicRegression(increasing=True, out_of_bounds="clip") | |
ir.fit(x, y) | |
all_predictions_finite = np.all(np.isfinite(ir.predict(x))) | |
assert all_predictions_finite | |
def test_isotonic_ymin_ymax(): | |
# Test from @NelleV's issue: | |
# https://github.com/scikit-learn/scikit-learn/issues/6921 | |
x = np.array( | |
[ | |
1.263, | |
1.318, | |
-0.572, | |
0.307, | |
-0.707, | |
-0.176, | |
-1.599, | |
1.059, | |
1.396, | |
1.906, | |
0.210, | |
0.028, | |
-0.081, | |
0.444, | |
0.018, | |
-0.377, | |
-0.896, | |
-0.377, | |
-1.327, | |
0.180, | |
] | |
) | |
y = isotonic_regression(x, y_min=0.0, y_max=0.1) | |
assert np.all(y >= 0) | |
assert np.all(y <= 0.1) | |
# Also test decreasing case since the logic there is different | |
y = isotonic_regression(x, y_min=0.0, y_max=0.1, increasing=False) | |
assert np.all(y >= 0) | |
assert np.all(y <= 0.1) | |
# Finally, test with only one bound | |
y = isotonic_regression(x, y_min=0.0, increasing=False) | |
assert np.all(y >= 0) | |
def test_isotonic_zero_weight_loop(): | |
# Test from @ogrisel's issue: | |
# https://github.com/scikit-learn/scikit-learn/issues/4297 | |
# Get deterministic RNG with seed | |
rng = np.random.RandomState(42) | |
# Create regression and samples | |
regression = IsotonicRegression() | |
n_samples = 50 | |
x = np.linspace(-3, 3, n_samples) | |
y = x + rng.uniform(size=n_samples) | |
# Get some random weights and zero out | |
w = rng.uniform(size=n_samples) | |
w[5:8] = 0 | |
regression.fit(x, y, sample_weight=w) | |
# This will hang in failure case. | |
regression.fit(x, y, sample_weight=w) | |
def test_fast_predict(): | |
# test that the faster prediction change doesn't | |
# affect out-of-sample predictions: | |
# https://github.com/scikit-learn/scikit-learn/pull/6206 | |
rng = np.random.RandomState(123) | |
n_samples = 10**3 | |
# X values over the -10,10 range | |
X_train = 20.0 * rng.rand(n_samples) - 10 | |
y_train = ( | |
np.less(rng.rand(n_samples), expit(X_train)).astype("int64").astype("float64") | |
) | |
weights = rng.rand(n_samples) | |
# we also want to test that everything still works when some weights are 0 | |
weights[rng.rand(n_samples) < 0.1] = 0 | |
slow_model = IsotonicRegression(y_min=0, y_max=1, out_of_bounds="clip") | |
fast_model = IsotonicRegression(y_min=0, y_max=1, out_of_bounds="clip") | |
# Build interpolation function with ALL input data, not just the | |
# non-redundant subset. The following 2 lines are taken from the | |
# .fit() method, without removing unnecessary points | |
X_train_fit, y_train_fit = slow_model._build_y( | |
X_train, y_train, sample_weight=weights, trim_duplicates=False | |
) | |
slow_model._build_f(X_train_fit, y_train_fit) | |
# fit with just the necessary data | |
fast_model.fit(X_train, y_train, sample_weight=weights) | |
X_test = 20.0 * rng.rand(n_samples) - 10 | |
y_pred_slow = slow_model.predict(X_test) | |
y_pred_fast = fast_model.predict(X_test) | |
assert_array_equal(y_pred_slow, y_pred_fast) | |
def test_isotonic_copy_before_fit(): | |
# https://github.com/scikit-learn/scikit-learn/issues/6628 | |
ir = IsotonicRegression() | |
copy.copy(ir) | |
def test_isotonic_dtype(): | |
y = [2, 1, 4, 3, 5] | |
weights = np.array([0.9, 0.9, 0.9, 0.9, 0.9], dtype=np.float64) | |
reg = IsotonicRegression() | |
for dtype in (np.int32, np.int64, np.float32, np.float64): | |
for sample_weight in (None, weights.astype(np.float32), weights): | |
y_np = np.array(y, dtype=dtype) | |
expected_dtype = check_array( | |
y_np, dtype=[np.float64, np.float32], ensure_2d=False | |
).dtype | |
res = isotonic_regression(y_np, sample_weight=sample_weight) | |
assert res.dtype == expected_dtype | |
X = np.arange(len(y)).astype(dtype) | |
reg.fit(X, y_np, sample_weight=sample_weight) | |
res = reg.predict(X) | |
assert res.dtype == expected_dtype | |
def test_isotonic_mismatched_dtype(y_dtype): | |
# regression test for #15004 | |
# check that data are converted when X and y dtype differ | |
reg = IsotonicRegression() | |
y = np.array([2, 1, 4, 3, 5], dtype=y_dtype) | |
X = np.arange(len(y), dtype=np.float32) | |
reg.fit(X, y) | |
assert reg.predict(X).dtype == X.dtype | |
def test_make_unique_dtype(): | |
x_list = [2, 2, 2, 3, 5] | |
for dtype in (np.float32, np.float64): | |
x = np.array(x_list, dtype=dtype) | |
y = x.copy() | |
w = np.ones_like(x) | |
x, y, w = _make_unique(x, y, w) | |
assert_array_equal(x, [2, 3, 5]) | |
def test_make_unique_tolerance(dtype): | |
# Check that equality takes account of np.finfo tolerance | |
x = np.array([0, 1e-16, 1, 1 + 1e-14], dtype=dtype) | |
y = x.copy() | |
w = np.ones_like(x) | |
x, y, w = _make_unique(x, y, w) | |
if dtype == np.float64: | |
x_out = np.array([0, 1, 1 + 1e-14]) | |
else: | |
x_out = np.array([0, 1]) | |
assert_array_equal(x, x_out) | |
def test_isotonic_make_unique_tolerance(): | |
# Check that averaging of targets for duplicate X is done correctly, | |
# taking into account tolerance | |
X = np.array([0, 1, 1 + 1e-16, 2], dtype=np.float64) | |
y = np.array([0, 1, 2, 3], dtype=np.float64) | |
ireg = IsotonicRegression().fit(X, y) | |
y_pred = ireg.predict([0, 0.5, 1, 1.5, 2]) | |
assert_array_equal(y_pred, np.array([0, 0.75, 1.5, 2.25, 3])) | |
assert_array_equal(ireg.X_thresholds_, np.array([0.0, 1.0, 2.0])) | |
assert_array_equal(ireg.y_thresholds_, np.array([0.0, 1.5, 3.0])) | |
def test_isotonic_non_regression_inf_slope(): | |
# Non-regression test to ensure that inf values are not returned | |
# see: https://github.com/scikit-learn/scikit-learn/issues/10903 | |
X = np.array([0.0, 4.1e-320, 4.4e-314, 1.0]) | |
y = np.array([0.42, 0.42, 0.44, 0.44]) | |
ireg = IsotonicRegression().fit(X, y) | |
y_pred = ireg.predict(np.array([0, 2.1e-319, 5.4e-316, 1e-10])) | |
assert np.all(np.isfinite(y_pred)) | |
def test_isotonic_thresholds(increasing): | |
rng = np.random.RandomState(42) | |
n_samples = 30 | |
X = rng.normal(size=n_samples) | |
y = rng.normal(size=n_samples) | |
ireg = IsotonicRegression(increasing=increasing).fit(X, y) | |
X_thresholds, y_thresholds = ireg.X_thresholds_, ireg.y_thresholds_ | |
assert X_thresholds.shape == y_thresholds.shape | |
# Input thresholds are a strict subset of the training set (unless | |
# the data is already strictly monotonic which is not the case with | |
# this random data) | |
assert X_thresholds.shape[0] < X.shape[0] | |
assert np.isin(X_thresholds, X).all() | |
# Output thresholds lie in the range of the training set: | |
assert y_thresholds.max() <= y.max() | |
assert y_thresholds.min() >= y.min() | |
assert all(np.diff(X_thresholds) > 0) | |
if increasing: | |
assert all(np.diff(y_thresholds) >= 0) | |
else: | |
assert all(np.diff(y_thresholds) <= 0) | |
def test_input_shape_validation(): | |
# Test from #15012 | |
# Check that IsotonicRegression can handle 2darray with only 1 feature | |
X = np.arange(10) | |
X_2d = X.reshape(-1, 1) | |
y = np.arange(10) | |
iso_reg = IsotonicRegression().fit(X, y) | |
iso_reg_2d = IsotonicRegression().fit(X_2d, y) | |
assert iso_reg.X_max_ == iso_reg_2d.X_max_ | |
assert iso_reg.X_min_ == iso_reg_2d.X_min_ | |
assert iso_reg.y_max == iso_reg_2d.y_max | |
assert iso_reg.y_min == iso_reg_2d.y_min | |
assert_array_equal(iso_reg.X_thresholds_, iso_reg_2d.X_thresholds_) | |
assert_array_equal(iso_reg.y_thresholds_, iso_reg_2d.y_thresholds_) | |
y_pred1 = iso_reg.predict(X) | |
y_pred2 = iso_reg_2d.predict(X_2d) | |
assert_allclose(y_pred1, y_pred2) | |
def test_isotonic_2darray_more_than_1_feature(): | |
# Ensure IsotonicRegression raises error if input has more than 1 feature | |
X = np.arange(10) | |
X_2d = np.c_[X, X] | |
y = np.arange(10) | |
msg = "should be a 1d array or 2d array with 1 feature" | |
with pytest.raises(ValueError, match=msg): | |
IsotonicRegression().fit(X_2d, y) | |
iso_reg = IsotonicRegression().fit(X, y) | |
with pytest.raises(ValueError, match=msg): | |
iso_reg.predict(X_2d) | |
with pytest.raises(ValueError, match=msg): | |
iso_reg.transform(X_2d) | |
def test_isotonic_regression_sample_weight_not_overwritten(): | |
"""Check that calling fitting function of isotonic regression will not | |
overwrite `sample_weight`. | |
Non-regression test for: | |
https://github.com/scikit-learn/scikit-learn/issues/20508 | |
""" | |
X, y = make_regression(n_samples=10, n_features=1, random_state=41) | |
sample_weight_original = np.ones_like(y) | |
sample_weight_original[0] = 10 | |
sample_weight_fit = sample_weight_original.copy() | |
isotonic_regression(y, sample_weight=sample_weight_fit) | |
assert_allclose(sample_weight_fit, sample_weight_original) | |
IsotonicRegression().fit(X, y, sample_weight=sample_weight_fit) | |
assert_allclose(sample_weight_fit, sample_weight_original) | |
def test_get_feature_names_out(shape): | |
"""Check `get_feature_names_out` for `IsotonicRegression`.""" | |
X = np.arange(10) | |
if shape == "2d": | |
X = X.reshape(-1, 1) | |
y = np.arange(10) | |
iso = IsotonicRegression().fit(X, y) | |
names = iso.get_feature_names_out() | |
assert isinstance(names, np.ndarray) | |
assert names.dtype == object | |
assert_array_equal(["isotonicregression0"], names) | |
def test_isotonic_regression_output_predict(): | |
"""Check that `predict` does return the expected output type. | |
We need to check that `transform` will output a DataFrame and a NumPy array | |
when we set `transform_output` to `pandas`. | |
Non-regression test for: | |
https://github.com/scikit-learn/scikit-learn/issues/25499 | |
""" | |
pd = pytest.importorskip("pandas") | |
X, y = make_regression(n_samples=10, n_features=1, random_state=42) | |
regressor = IsotonicRegression() | |
with sklearn.config_context(transform_output="pandas"): | |
regressor.fit(X, y) | |
X_trans = regressor.transform(X) | |
y_pred = regressor.predict(X) | |
assert isinstance(X_trans, pd.DataFrame) | |
assert isinstance(y_pred, np.ndarray) | |